The Journal of Korean Institute of Communications and Information Sciences
/
v.42
no.3
/
pp.649-660
/
2017
In electronic warfare, the pulse amplitude, one of information of a pulse signal emitted by an enemy, is used for estimating distance from the source and for deinterleaving mixed source signals. An estimate of pulse amplitude is conventionally determined as the maximum magnitude of a Fourier transformed signal within its pulse width which is estimated pre-step in an electronic warfare receiver. However, when frequency modulated signals are received, it is difficult to estimate their pulse amplitudes with this conventional method because the energy of signals is dispersed in frequency domain. In order to overcome this limitation, this paper proposes an enhanced pulse amplitude estimation method which calculates the average power of the received pulse signal in time domain and removes the noise power of the receiver. Simulation results show that even in case the frequency modulated signal is received, the proposed method has the same performance as estimating the pulse amplitude when unmodulated signal is received. In addition, the proposed method is shown to be more robust to an estimation error of pulse width, which affects the estimation performance of pulse amplitude, than the conventional method.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.451-457
/
2018
We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.6
/
pp.634-638
/
2018
Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.
KIPS Transactions on Software and Data Engineering
/
v.2
no.10
/
pp.723-730
/
2013
This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.
While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.
For coronary procedures, X-ray angiogram images are useful for diagnosing and assisting procedures. It is challenging to accurately segment a coronary artery using only a single segmentation model in 2D X-ray images due to a complex structure of three-dimensional coronary artery, especially from phenomenon of vessels being broken in the middle or end of coronary artery. In order to solve these problems, the initial segmentation is performed using an existing single model, and the candidate regions for the sophisticate correction is estimated based on the initial segment, and the local patch-based correction is performed in the candidate regions. Through this research, not only the broken coronary arteries are re-connected, but also the distal part of coronary artery that is very thin is additionally correctly found. Further, the performance can be much improved by combining the proposed correction method with any existing coronary artery segmentation method. In this paper, the U-net, a fully convolutional network was chosen as a segmentation method and the proposed correction method was combined with U-net to demonstrate a significant improvement in performance through X-ray images from several patients.
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.1
/
pp.129-139
/
2019
Mapping urban areas using the earth observation satellites is useful for monitoring urban expansions and measuring urban developments. In this research, the different thresholds for detecting the urban areas separately from the remote-sensing index images (normalized-difference built-up index(NDBI) and urban index(UI) images) generated from the Landsat-8 image acquired in Daegu, South Korea were evaluated through the following steps: (1) the NDBI and UI images were separately generated from the given Landsat-8 image; (2) the different thresholds (-0.4, -0.2, and 0) for detecting the urban areas separately from the NDBI and UI images were evaluated; and (3) the accuracy of each detected urban area was assessed. The experiment results showed that the threshold -0.2 had the best performance for detecting the urban areas from the NDBI image, while the threshold -0.4 had the best performance for detecting the urban areas from the UI image. Some misclassification errors, however, occurred in the areas where the bare soil areas were classified into urban areas or where the high-rise apartments were classified into other areas. In the future research, a robust methodology for detecting urban areas, including the various types of urban features, with less misclassification errors will be proposed using the satellite images. In addition, research on analyzing the pattern of urban expansion will be carried out using the urban areas detected from the multi-temporal satellite images.
This paper analyzes the factors which affect University professors and students on their startup activities, such as (a) University factors: their industrial cooperation organization and systems, their resources for startup support, their knowledge assets, and (b) socioeconomic characteristics in which Universities are located. We used the data and information from the University Information System and the National Statistical Office Publication to analyze 157 4-year Universities in Korea who uploaded their startup-related information on the system. Our analysis shows that Universities' systems, such as the term for Professors' leave of absence for startup activities, and their amount of knowledge assets affect the number of Professor startups significantly positively, while there is no significant effect on their performance, in terms of sales, from those factors, except for the amount of patents that the University has. In the meantime, the number of practical startup courses, the number of startup clubs, and the number of professor startups in the University affect the number of student startups, while the size of industrial cooperation body, the amount of knowledge asset, the area's socioeconomic characteristics didn't affect their performance. The result implies that we need to take different approaches to boost University professor startups and their student startups: better system and more knowledge for the former, more practical courses and programs for the latter. Further study is needed to get a more robust result because this analysis used only one year data, and personal trait data was not included in the analysis. A panel data analysis for several years is recommended for further research.
Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
KIPS Transactions on Software and Data Engineering
/
v.12
no.1
/
pp.51-58
/
2023
In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.
Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.