• Title/Summary/Keyword: robust optimization problem

Search Result 252, Processing Time 0.028 seconds

Development of a Object Oriented Framework for System Design Optimization (최적설계 지원 객체지향 프레임 웍 개발)

  • Chu, Min-Sic;Choi, Dong-Hoon;Lee, Se-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.369-375
    • /
    • 2001
  • For Optimization technology Was Developed in 1960, the Optimization Technology have grown into a full-featured, robust, highly rated and highly used. And Optimization techniques, having reached a degree of maturity over the past several years, are being used in a wide spectrum of industries, including aerospace, automotive, chemical, electrical, and manufacturing industries. With rapidly advancing computer technology, computers are becoming more powerful, and correspondingly, the size and the complexity of the problems being solved using Optimization techniques are also increasing. But Optimization techniques with analysis solver have many problems. For instance, the difficulties that a particular interface must be coded for each design problem and that the designer should be familiar with the optimization program as well as the analysis program. The purpose of this paper is Optimal Design Framework for Mechanical systems design. This Design Framework has two Optimizers, ADS (local optimizer) and RSM(Response Surface Method), and graphic user interfaces for formulation and optimum design problem and controlling the design process. Current Design Framework tested by two analysis solver, ADAMS and ANSYS. First this paper focused on the core Framework and their conception. In the second of the paper, I cover subjects such as Design Framework Operation. Next, The validity and effectiveness of Design Framework are shown by applying it to many practical design problems and obtaining satisfactory results. Finally, if you are an advanced Operator, you might want to use Response Surface Method, so that cover the result applied by RSM. here.

  • PDF

Optimal Placement of Synchronized Phasor Measurement Units for the Robust Calculation of Power System State Vectors (견실한 전력계통 상태벡터 계산을 위한 동기 페이저 측정기 최적배치)

  • Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.75-79
    • /
    • 2000
  • This paper proposes the optimal placement with minimum set of Phasor Measurement Units (PMU's) using tabu search and makes an alternative plan to secure the robustness of the network with PMU's. The optimal PMU Placement (OPP) problem is generally expressed as a combinatorial optimization problem subjected to the observability constraints. Thus, it is necessary to make a use of an efficient method in solving the OPP problem. In this paper, a tabu search based approach to solve efficiently this OPP problem proposed. The observability of the network with PMU's is fragile at any single PMU contingency. To overcome the fragility, an alternative scheme that makes efficient use of the existing measurement system in power system state estimation proposed. The performance of the proposed approach and the alternative scheme is evaluated with IEEE sample systems.

  • PDF

A Stochastic Model for Optimizing Offshore Oil Production Under Uncertainty (불확실성하의 해양석유생산 최적화를 위한 추계적 모형)

  • Ku, Ji-Hye;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.462-468
    • /
    • 2019
  • Offshore oil production faces several difficulties caused by oil price decline and unexpected changes in the global petroleum logistics. This paper suggests a stochastic model for optimizing the offshore oil production under uncertainty. The proposed model incorporates robust optimization and restricted recourse framework, and uses the lower partial mean as the measure of variability of the recourse profit. Some computational experiments and results based on the proposed model using scenario-based data on the crude oil price and demand under uncertainty are examined and presented. This study would be meaningful in decision-making for the offshore oil production problem considering risks under uncertainty.

Application of $H{\infty}$ optimization to design of the monitor AGC for a hot strip mill plant (열간압연 Monitor AGC에의 $H{\infty}$ 최적화 기법의 적용)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.248-251
    • /
    • 1991
  • A robust monitor AGC(Automatic Gauge Control) system for a hot strip mill plant of POSCO Is designed by minimizing the H.inf. norm of a so called mixed sensitivity function. In order to solve the mininizatlon problem, a polynomial approach proposed by Kwakernaak[5] is used. The controller performance is tested by a computer simulation under various circumstances.

  • PDF

Robust Delay-dependent Stability Criterion for Uncertain Networked Control System (불확실성이 존재하는 네트워크 제어시스템의 강인 지연의존 안정성 판별법)

  • Park, Myeongjin;Kwon, Ohmin;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2009
  • In this paper, the problem of stability analysis for networked control systems with norm-bounded parameter uncertainties is investigated. By construction Lyapunov's functional, a new delay-dependent stability criterion for uncertain networked control system is established in terms of LMIs (linear matrix inequalities) which can be easily by various convex optimization algorithms. One numerical example is included to show the effectiveness of proposed criterion.

  • PDF

Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems (수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구)

  • Cho, Hyun-Man;Lee, Hyun-Jin;Ryu, Yeon-Sun;Kim, Jeong-Tae;Na, Won-Bae;Lim, Dong-Joo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

Extraction of Facial Region Using Fuzzy Color Filter (퍼지 색상 필터를 이용한 얼굴 영역 추출)

  • Kim, M.H.;Park, J.B.;Jung, K.H.;Joo, Y.H.;Lee, J.;Cho, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.147-149
    • /
    • 2004
  • There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.

  • PDF

Optimal design of $H_{\infty}$ power system stabilizer using genetic algorithm (유전알고리즘을 이용한 $H_{\infty}$ 전력 계통 안정화 장치의 최적 설계)

  • Han, G.M.;Lee, J.P.;Chung, H.H.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1321-1323
    • /
    • 1999
  • In this paper, a robust $H_{\infty}$ optimal design problem under a structure-specified PSS is investigated for power systems with parameter variation and disturbance uncertainties. Genetic algorithm is employed for optimization method of PSS parameters. It is shown that the proposed $H_{\infty}$ PSS tuned using genetic algorithm is more robust than conventional PSS.

  • PDF

A robust controller design for rapid thermal processing in semiconductor manufacturing

  • Choi, Byung-Wook;Choi, Seong-Gyu;Kim, Dong-Sung;Park, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.79-82
    • /
    • 1995
  • The problem of temperature control for rapid thermal processing (RTP) in semiconductor manufacturing is discussed in this paper. Among sub=micron technologies for VLSI devices, reducing the junction depth of doped region is of great importance. This paper investigates existing methods for manufacturing wafers, focusing on the RPT which is considered to be good for formation of shallow junctions and performs the wafer fabrication operation in a single chamber of annealing, oxidation, chemical vapor deposition, etc., within a few minutes. In RTP for semiconductor manufacturing, accurate and uniform control of the wafer temperature is essential. In this paper, a robustr controller is designed using a recently developed optimization technique. The controller designed is then tested via computer simulation and compared with the other results.

  • PDF