• Title/Summary/Keyword: robot teaching

Search Result 205, Processing Time 0.023 seconds

Remote Dynamic Control of AM1 Robot Using Network (네트워크를 이용한 AM1 로봇의 원격 동적 제어)

  • Kim, Seong-Il;Yoon, Sin-Il;Bae, Gil-Ho;Lee, Jin;Han, Seong-Hyeon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.556-560
    • /
    • 2002
  • In this paper, we propose a remote controller for robot manipulator using local area network(LAN) and internet. To do this, we develope a server-client system as used in the network field. The client system is in any computer in remote place for the user to log-in the server and manage the remote factory. the server system is a computer which controls the manipulator and waits for a access from client. The server system consists of several control algorithms which is needed to drive the manipulator and networking system to transfer images that shows states of the work place, and to receive a Tmp data to run the manipulator The client system consists of 3D(dimension) graphic user interface for teaching and off-line task like simulation, external hardware interface which makes it easier for the user to teach. Using this server-client system, the user who is on remote place can edit the work schedule of manipulator, then run the machine after it is transferred and monitor the results of the task.

  • PDF

The Effect of Convergence Education based on Reading and Robot SW Education for Improving Computational Thinking (컴퓨팅 사고력 향상을 위한 독서와 로봇SW교육 기반 융합교육의 효과)

  • Jun, Soojin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2020
  • The 2015 revised curriculum aims to cultivate creative convergence talent. In this regard, SW education needs to study various convergence education methods to enhance computational thinking. The purpose of this study is to analyze the effects of SW convergence education centered on reading education and robot utilization education to improve computing thinking ability. For this purpose, SW education teaching and learning was designed by combining SW education using card coding-based robots with reading education based on interactive works and reading on the whole work. As a result, the convergence education between reading and SW improved all three areas of the concept, practice, and perspective of computational thinking ability and increased the learner's satisfaction.

Development of Collaborative Dual Manipulator System for Packaging Industrial Coils (산업용 코일 포장을 위한 협동 양팔 로봇 시스템의 개발)

  • Haeseong Lee;Yonghee Lee;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.236-243
    • /
    • 2024
  • This paper introduces a dual manipulator system designed to automate the packaging process of industrial coils, which exhibit higher variability than other structured industrial fields due to diverse commercial requirements. The conventional solution involves the direct-teaching method, where an operator instructs the robot on a target configuration. However, this method has distinct limitations, such as low flexibility in dealing with varied sizes and safety concerns for the operators handling large products. In this sense, this paper proposes a two-step approach for coil packaging: motion planning and assembly execution. The motion planning includes a Rapidly-exploring Random Tree algorithm and a smoothing method, allowing the robot to reach the target configuration. In the assembly execution, the packaging is considered a peg-in-hole assembly. Unlike typical peg-in-hole assembly handling two workpieces, the packaging includes three workpieces (e.g., coil, inner ring, side plate). To address this assembly, the paper suggests a suitable strategy for dual manipulation. Finally, the validity of the proposed system is demonstrated through experiments with three different sizes of coils, replicating real-world packaging situations.

An integrate information technology model during earthquake dynamics

  • Chen, Chen-Yuan;Chen, Ying-Hsiu;Yu, Shang-En;Chen, Yi-Wen;Li, Chien-Chung
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.633-647
    • /
    • 2012
  • Applying Information Technology (IT) in practical engineering has become one of the most important issues in the past few decades, especially on internal solitary wave, intelligent robot interaction, artificial intelligence, fuzzy Lyapunov, tension leg platform (TLP), consumer and service quality. Other than affecting the traditional teaching mode or increasing the inter-relation with users, IT can also be connected with the current society by collecting the latest information from the internet. It is apparently a fashion-catching-up technology. Therefore, the learning of how to use IT facilities is becoming one of engineers' skills nowadays. In addition to studying how well engineers learn to operate IT facilities and apply them into teaching, how engineers' general capacity of information effects the results of learning IT are also discussed. This research introduces the "Combined TAM and TPB mode," to understand the situation of engineers using IT facilities.

A Study on Implementation of Robot Overlay Welding System Based on OLP for Ball of Ball Valves (볼밸브용 볼의 OLP 기반 로봇육성용접 시스템 구현에 관한 연구)

  • Jang, Jae-Sung;Hwang, Seong-Hyun;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.446-452
    • /
    • 2016
  • Recently, heat resistant super alloys (which are wear-resistant, corrosion-resistant, and heat-resistant), have been used as the basic structural material in offshore and petrochemical plants. On the other hand, making valves from very expensive, high heat-resistant alloys increases the production cost and decreases its market competitiveness. To solve these problems, the technique of overlaying only those that flow on the fluid has been used as an effective method. Nevertheless, because the former technique of overlaying the ball is performed manually, it takes too much time and perfect welding is difficult to perform. To solve this problem, this study developed a robot automation system that can make uniformly overlay welding of the ball for ball-valves. The system consists of a 6-axis welding robot with a welding torch and additional 2 axes for the rotation of positioner, the controller, and a robot path OLP (Off-Line Programming). The CAD drawing data was entered in the Off-line program to obtain the robot teaching point and drive source. Overlay welding paths were implemented using Matlab. Through an automated overlaying system that implemented the OLP, the productivity rose 2.58 times, as the amount of time required for work decreased from 88 hours to 41 hours.

Structural Relationships among Factors Affecting Teachers' Robot-based SW Education Acceptance in Primary School (초등교사의 로봇활용SW교육 활용의도와 영향 요인간 구조적 관계 분석)

  • Lee, Jeongmin;Chung, Hyunmin;Ko, Eunji
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.215-229
    • /
    • 2018
  • The purpose of this study was to examine the structural relationships among factors affecting teachers' robot-based SW education acceptance in primary school. In addition, this study investigated moderating effects of gender, age, and experience. For this purpose, 171 elementary school teachers participated in this study and structural equation modeling analyses were employed to examine the causal relationships among variables. The result of this study showed that perceived ease of use, perceived usefulness, personal innovativeness had direct effects on attitude. Furthermore, attitude mediated relationships between perceived usefulness, perceived ease of use, personal innovativeness and intention to use. Third, the moderating effects of experience between perceived usefulness, personal innovativeness and attitude were significant, but gender and age were not significant on all paths. Based on the results of this study, successful teaching practices, cases, and contents should be shared with teachers. Also, continuous supports and differentiated strategies based on experience are needed.

Development of a Simulator for Off-Line Programming of Gantry-Robot Welding System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kwon Son;Park, Jae-Won;Jung, Chang-Wook;Kim, Hyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.517-517
    • /
    • 2000
  • Welding automation is one of the most important manufacturing issues in shipbuilding in order to lower the cost, increase the quality, and avoid the labor problems. Generally the on-line teaching is utilized on the robot that is used in the welding automation system, but it requires much effort and long time to program. Especially, if the system is composed of more than two cooperating robots, it demands much more skill to program the robots' motion. Thus, a convenient programming tool is required for efficient utilization of welding automation system. In this study, a convenient programming tool is developed for welding automation in which gantry-robot system is used. The system is composed of a gantry transporter and two robots mounted on the gantry to cover the wide work range in the ship building application. As a programming tool, an off-line programming software based on PC is developed. By using this software, field operator does not need to concern about coding of task programs for three control units, one is for gantry and two are for robots. The task programs are automatically generated by assembling the program modules in database according to geometrical information of workpiece and welding condition, which become the only concern of field operator, The feasibility of the generated programs can be verified via a motion simulator previously to on-line running.

  • PDF

An Analysis of Teachers' TPACK on Robotics in Education (로봇활용교육에 대한 교사들의 테크놀로지내용교수지식 분석)

  • Shin, Won Sug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.196-203
    • /
    • 2020
  • Robotics has been increasing its role among factors affecting teachers' technological, pedagogical, and content knowledge(TPACK) in education. This paper reviews these factors and analyses each to identify those most influential: teachers' individual (gender, teaching experiences), professional development(PD) for technology integration, psycho-philosophical characteristics (attitude toward technology integration, constructive belief), and school characteristics.Those having the most significant influence on teachers' TPACK of robotics were PD for technology integration from individual characteristics, attitudes toward technology integration, educational belief from psycho-philosophical characteristics, and schools' atmosphere and support from school characteristics.Thisreview confirmed that PD for technology integration and school atmosphere are the two most influential factors among all factors considered. Practical implications on precautions for effective integration of robotics in education were identified.

Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models (베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘)

  • Lee, Sang-Hyoung;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • A robot must be able to generate various skills to achieve given tasks intelligently and reasonably. The robot must first learn affordances to generate the skills. An affordance is defined as qualities of objects or environments that induce actions. Affordances can be usefully used to generate skills. Most tasks require sequential and goal-oriented behaviors. However, it is usually difficult to accomplish such tasks with affordances alone. To accomplish such tasks, a skill is constructed with an affordance and a soft behavioral motivation switch for reflecting goal-oriented elements. A skill calculates a behavioral motivation as a combination of both presently perceived information and goal-oriented elements. Here, a behavioral motivation is the internal condition that activates a goal-oriented behavior. In addition, a robot must be able to execute sequential behaviors. We construct skill networks by using generated skills that make action selection feasible to accomplish a task. A robot can select sequential and a goal-oriented behaviors using the skill network. For this, we will first propose a method for modeling and learning Bayesian networks that are used to generate affordances. To select sequential and goal-oriented behaviors, we construct skills using affordances and soft behavioral motivation switches. We also propose a method to generate the skill networks using the skills to execute given tasks. Finally, we will propose action-selection-mechanism to select sequential and goal-oriented behaviors using the skill network. To demonstrate the validity of our proposed methods, "Searching-for-a-target-object", "Approaching-a-target-object", "Sniffing-a-target-object", and "Kicking-a-target-object" affordances have been learned with GENIBO (pet robot) based on the human teaching method. Some experiments have also been performed with GENIBO using the skills and the skill networks.

An Exploratory study on Student-Intelligent Robot Teacher relationship recognized by Middle School Students (중학생이 인식하는 학습자-지능형로봇 교사의 관계 형성 요인)

  • Lee, Sang-Soog;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.37-44
    • /
    • 2020
  • This study aimed to explore the relationship between Intelligent Robot Reacher(IRT)-student by examining the factors of their relationship perceived by middle school students. In doing so, we developed questionnaires based on the existing teacher-student relationship scale and conducted an online survey of 283 first graders in middle school. The collected date were analyzed using exploratory factor analyses with SPSS 23 and confirmatory factor analysis with Amos 21. The study findings identified four factors of IRT-student relationship namely "trust", "competence", "emotional exchange", and "tolerance". It is expected that the study can be used to discuss ways to enhance educationally significant interaction between students-IRT and teaching methods using intelligent robots(IRs). Also, the study will contribute to the understanding and development of various services using IRs. Based on the study finidngs, future studies should investigate the perception of various education stockholders (teachers, parets, etc) on IRT to elevate the Human-Robot Interaction in the education field.