• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.032 seconds

Tip-over Terrain Detection Method based on the Support Inscribed Circle of a Mobile Robot (지지내접원을 이용한 이동 로봇의 전복 지형 검출 기법)

  • Lee, Sungmin;Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1057-1062
    • /
    • 2014
  • This paper proposes a tip-over detection method for a mobile robot using a support inscribed circle defined as an inscribed circle of a support polygon. A support polygon defined by the contact points between the robot and the terrain is often used to analyze the tip-over. For a robot moving on uneven terrain, if the intersection between the extended line of gravity from the robot's COG and the terrain is inside the support polygon, tip-over will not occur. On the contrary, if the intersection is outside, tip-over will occur. The terrain is detected by using an RGB-D sensor. The terrain is locally modeled as a plane, and thus the normal vector can be obtained at each point on the terrain. The support polygon and the terrain's normal vector are used to detect tip-over. However, tip-over cannot be detected in advance since the support polygon is determined depending on the orientation of the robot. Thus, the support polygon is approximated as its inscribed circle to detect the tip-over regardless of the robot's orientation. To verify the effectiveness of the proposed method, the experiments are carried out using a 4-wheeled robot, ERP-42, with the Xtion RGB-D sensor.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

Design of a Cross-obstacle Neural Network Controller using Running Error Calibration (주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계)

  • Lim, Shin-Teak;Yoo, Sung-Goo;Kim, Tae-Yeong;Kim, Yeong-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.

Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method (파티클 필터 방법을 이용한 특징점과 로봇 위치의 동시 추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • This paper describes a SLAM method which estimates landmark locations and robot pose simultaneously. The particle filter can deal with nonlinearity of robot motion as well as the non Gaussian property of robot motion uncertainty and sensor error. The state to be estimated includes the locations of landmarks in addition to the robot pose. In the experiment, four beacons which transmit ultrasonic signal are used as landmarks. The robot receives the ultrasonic signals from the beacons and detects the distance to them. The method uses rang scanning sensor to build geometric feature of the environment. Since robot location and heading are estimated by the particle filter, the scanned range data can be converted to the geometric map. The performance of the method is compared with that of the deadreckoning and trilateration.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Development of a Legged Walking Robot Based on Jansen Kinetics (얀센 키네틱스를 기반으로 한 보행 로봇 개발)

  • Kim, Sun-Wook;Kim, Yeoun-Gyun;Jung, Hah-Min;Lee, Se-Han;Hwang, Seung-Gook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • In this paper, the mechanism that can walk efficiently in wet land or sand area is proposed. A vision camera is attached to the mechanism, which makes a kind of biologically inspired robot for coast guard. This visionary information enables the biologically inspired robot to react in peripheral environment by a soft-computing algorithm. In addition, the biologically inspired robot can achieve the mission appointed by a programmer connecting with outside, based on RF and Blue-tooth communication module. Therefore, the purpose of this research is the implementation of the biologically inspired robot that can operate most adaptively in sand and wet surface based on Theo Jansen mechanism.

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

Development of an Internet-based Robot Education System

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.616-621
    • /
    • 2003
  • Until now, many networked robots have been connected to the Internet for the various applications. With these networked robots, very long distance teleoperation can be possible through the Internet. However, the promising area of the Internet-based teleoperation may be distance learning, because of several reasons such as the unpredictable characteristics of the Internet. In robotics class, students learn many theories about robots, but it is hard to perform the actual experiments for all students due to the rack of the real robots and safety problems. Some classes may introduce the virtual robot simulator for students to program the virtual robot and upload their program to operate the real robot through the off-line programming method. However, the students may also visit the laboratory when they want to use the real robot for testing their program. In this paper, we developed an Internet-based robot education system. The developed system was composed of two parts, the robotics class materials and the web-based Java3d robot simulator. That is, this system can provide two services for distance learning to the students through the Internet. The robotics class materials can be provided to the student as the multimedia contents on the web page. As well, the web-based robot simulator as the real experiment tool can help the students get good understanding about certain subject. So, the students can learn the required robotics theories and perform the real experiments from their web browser when they want to study themselves at any time.

  • PDF

A Robot Controller Development of a Large-scale System for Shipbuilding

  • Kim, Soo-Ho;Kang, Gye-Hyung;Park, Ju-Yi;Chu, Gil-Whoan;Kim, Jin-Wook;Kim, Ji-Yun;Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.472-475
    • /
    • 2005
  • This paper present a robot controller developed for shipbuilding yard. Since shipbuilding process handles large work pieces and has dusty and noisy environment, the developed controller has separated architecture into main control part and servo control part. Main control part is located in control room while servo control part is located near robot with work pieces. Commutation between two parts is done through SynqNet and RS485. Air purging system is adapted to servo control part for better reliability. We aimed open architecture in both hardware and software architecture. For open hardware architecture, we employed Compact PCI (cPCI) because it is widely used bus system and very reliable. Since lots of commercial boards are available with cPCI interface, upgrade and reconfiguration is easy. For open software architecture, Windows XP�� Embedded is selected as operating system (OS), because it is very popular OS and most hardware vender supports device driver for the windows XP.

  • PDF

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF