• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.04 seconds

A Control System for Synchronizing Attitude between an Android Smartphone and a Mobile Robot (안드로이드 스마트폰과 이동 로봇의 자세 동기화를 위한 제어 시스템)

  • Kim, Min J.;Bae, Seol B.;Shin, Dong H.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.277-283
    • /
    • 2014
  • In this paper, we propose a control system for synchronizing attitude between an Android smartphone and a mobile robot. The control system is comprised of a smartphone and a mobile robot. The smartphone transports its attitude to the mobile robot and receives the attitude of mobile robot through bluetooth communication. Further, the smartphone displays the mobile robot on the screen by using embedded camera, which can be used as a pseudo augmented reality. Comparing the received attitude data from smartphone, the mobile robot measures its attitude by an AHRS(attitude heading reference system) and controls its attitude. Experiments show that the synchronization performance of the proposed system is maintained in the error range of $1^{\circ}$.

A Hexapod Robot that can Walk Fast (빠른 보행이 가능한 6족 로봇)

  • Seo, Hyeon Se;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.536-543
    • /
    • 2013
  • In this paper, we propose a new type of hexapod robot that can walk fast. Most of the conventional hexapod robots are either rectangular type of hexagonal type. Those robots have drawbacks in the speed and stability of walking. The proposed robot has six legs, one fore leg, one hind leg, two left legs and two right legs. The proposed robot forms relatively wide supporting polygons along the walking direction, so it can walk very fast stably. We implemented the proposed hexapod robot and showed the feasibility of the robot by 3+3 walking experiment and 2+4 walking experiment.

Development of a sonar map based position estimation system for an autonomous mobile robot operating in an unknown environment (미지의 영역에서 활동하는 자율이동로봇의 초음파지도에 근거한 위치인식 시스템 개발)

  • 강승균;임종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1589-1592
    • /
    • 1997
  • Among the prerequisite abilities (perception of environment, path planning and position estimation) of an autonomous mobile robot, position estimation has been seldom studied by mobile robot researchers. In most cases, conventional positioin estimation has been performed by placing landmarks or giving the entrire environmental information in advance. Unlikely to the conventional ones, the study addresses a new method that the robot itself can select distinctive features in the environment and save them as landmarks without any a priori knowledge, which can maximize the autonomous behavior of the robot. First, an orjentaion probaility model is applied to construct a lcoal map of robot's surrounding. The feature of the object in the map is then extracted and the map is saved as landmark. Also, presented is the position estimation method that utilizes the correspondence between landmarks and current local map. In dong this, the uncertainty of the robot's current positioin is estimated in order to select the corresponding landmark stored in the previous steps. The usefulness of all these approaches are illustrated with the results porduced by a real robot equipped with ultrasonic sensors.

  • PDF

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF

The compensation of kinematic differences of a robot using image information (화상정보를 이용한 로봇기구학의 오차 보정)

  • Lee, Young-Jin;Lee, Min-Chul;Ahn, Chul-Ki;Son, Kwon;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1840-1843
    • /
    • 1997
  • The task environment of a robot is changing rapidly and task itself becomes complicated due to current industrial trends of multi-product and small lot size production. A convenient user-interfaced off-line programming(OLP) system is being developed in order to overcome the difficulty in teaching a robot task. Using the OLP system, operators can easily teach robot tasks off-line and verify feasibility of the task through simulation of a robot prior to the on-line execution. However, some task errors are inevitable by kinematic differences between the robot model in OLP and the actual robot. Three calibration methods using image information are proposed to compensate the kinematic differences. These methods compose of a relative position vector method, three point compensation method, and base line compensation method. To compensate a kinematic differences the vision system with one monochrome camera is used in the calibration experiment.

  • PDF

Intelligent Emotional Interface for Personal Robot and Its Application to a Humanoid Robot, AMIET

  • Seo, Yong-Ho;Jeong, Il-Woong;Jung, Hye-Won;Yang, Hyun-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1764-1768
    • /
    • 2004
  • In the near future, robots will be used for the personal use. To provide useful services to humans, it will be necessary for robots to understand human intentions. Consequently, the development of emotional interfaces for robots is an important expansion of human-robot interactions. We designed and developed an intelligent emotional interface for the robot, and applied the interfaces to our humanoid robot, AMIET. Subsequent human-robot interaction demonstrated that our intelligent emotional interface is very intuitive and friendly

  • PDF

An method for building 2D virtual environment for a remote controlled mobile robot

  • Kim, Woo-Kyoung;Hyun, Woong-Keun;Park, Jea-Yong;Yoon, In-Mo;Jung, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1430-1434
    • /
    • 2004
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we developed basic components for virtual robot control system interfaced with real environment. For this, a real robot with virtual interface module is developed and virtual robot of similar image with real robot is created by putting on 3D graphic texture to the real robot. To build an unknown environment to be linked with virtual environment, we proposed a hough transformation based algorithm. Our proposed algorithm consists of navigation module by using fuzzy engine and map building module. Experiments using a developed robot illustrate the method.

  • PDF

A decentralized collision avoidance algorithm of two mobile robots using potential fields

  • Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1544-1549
    • /
    • 2004
  • A new collision avoidance algorithm is presented for two mobile robots in narrow corridor environments. When two robots meet each other in a narrow corridor, one should yield the way to the other robot. To solve the problem arising in this situation, they exchange their path to get information about crossing-points to check avoidance conditions, which are necessary for choosing the robot to yield. The conditions are summarized as follows. 1) If one robot blocks the path to the closest crossing-point in front of the other robot. 2) If the closest crossing-point of each robot is the same point. 3) Which robot is closer to the closest crossing-point. In this paper, we propose a path planning algorithm for the robot which yield the way. Simulation results are presented to verify the feasibility of the proposed collision avoidance algorithm.

  • PDF

Characteristics of the ZMP for the biped robot

  • Park, Chan-Soo;Choi, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.220-224
    • /
    • 2003
  • This is a preliminary study is to make the robot walk more stably by observing the ZMP (Zero Moment Point) of the robot when the robot stands on one leg(single support) and then on two legs(double support) and so on. The robot consists of nine DOF (Degree of freedom) with lower part of the body. It is equipped with motor drivers and force sensors inside the robot. The motors are controlled by the external PC (Intel pentium 4). By the experimental results, it is found that the robot is unstable in the instant of changing from single support to double support or from double support to single support. We use the trajectory compensation of the angle and the length of both legs to realize more stable walking.

  • PDF

Real-Time System Design and Point-to-Point Path Tracking for Real-Time Mobile Robot

  • Wang, F.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, a novel feasible real-time system was researched for a differential driven wheeled autonomous mobile robot so that the mobile robot can move in a smooth, safe and elegant way. Least Square Minimum Path Planning was well used for the system to generate a smooth executable path for the mobile robot, and the point-to-point tracking algorithm was presented as well as its application in arbitrary path tracking. In order to make sure the robot can run elegantly and safely, trapezoidal speed was integrated into the point-to-point path tracking algorithm. The application to guest following for the autonomous mobile robot shows its wide application of the algorithm. The novel design was successfully proved to be feasible by our experiments on our mobile robot Interactive Robot Usher (IRU) in National University of Singapore.

  • PDF