• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.035 seconds

Sound Source Localization using HRTF database

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.751-755
    • /
    • 2005
  • We propose a sound source localization method using the Head-Related-Transfer-Function (HRTF) to be implemented in a robot platform. In conventional localization methods, the location of a sound source is estimated from the time delays of wave fronts arriving in each microphone standing in an array formation in free-field. In case of a human head this corresponds to Interaural-Time-Delay (ITD) which is simply the time delay of incoming sound waves between the two ears. Although ITD is an excellent sound cue in stimulating a lateral perception on the horizontal plane, confusion is often raised when tracking the sound location from ITD alone because each sound source and its mirror image about the interaural axis share the same ITD. On the other hand, HRTFs associated with a dummy head microphone system or a robot platform with several microphones contain not only the information regarding proper time delays but also phase and magnitude distortions due to diffraction and scattering by the shading object such as the head and body of the platform. As a result, a set of HRTFs for any given platform provides a substantial amount of information as to the whereabouts of the source once proper analysis can be performed. In this study, we introduce new phase and magnitude criteria to be satisfied by a set of output signals from the microphones in order to find the sound source location in accordance with the HRTF database empirically obtained in an anechoic chamber with the given platform. The suggested method is verified through an experiment in a household environment and compared against the conventional method in performance.

  • PDF

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

The design method research of the control system for Autonomous Underwater Vehicle (AUV) using Linear Matrix Inequality (LMI)

  • Nasuno, Youhei;Shimizu, Etsuro;Aoki, Taro;Yomamoto, Ikuo;Hyakudome, Tadahiro;Tsukioka, Satoshi;Yoshida, Hiroshi;Ishibashi, Shojiro;Ito, Masanori;Sasamoto, Ryoko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1060-1065
    • /
    • 2005
  • An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is developing light-and-small Autonomous Underwater Vehicles (AUV)$^{1)}$, named 'MR-X1' (Marine Robot Experimental 1), which can cruise, investigate and observe by itself without human's help. In this paper, we consider the motion control problem of 'MR-X1' and derive a controller. Since the dynamic property of 'MR-X1' is changed by the influence of the speed, the mathematical model of 'MR-X1' becomes the nonlinear model. In order to design a controller for 'MR-X1', we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates t e optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper proposes a controller design method using Linear Matrix Inequalities (LMIs)$^{2),3),4)}$, which can adapt the speed variation of 'MR-X1'. And examples of numerical analysis using our designed controller are shown.

  • PDF

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

Development of a Horse Robot for Indoor Leisure Sports (실내 레저 스포츠를 위한 승마 로봇의 개발)

  • Lee, Wonsik;Lee, Youngdae;Moon, Chanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.161-166
    • /
    • 2014
  • Recently, indoor sports simulator equipped with virtual reality devices, like screen golf system, are riding high. There have been many attempts to develop the indoor simulator systems which can make people enjoy exercises in various sports area. A real horseback riding could not have been popularized, because of the cost involved, difficulty to learn and its dangerousness. In this research, a robotic horseback riding platform based on parallel mechanism and virtual reality device is proposed. The proposed platform provides realistic riding feels and various levels of riding difficulty. The equipped motion capture system with a vision sensor enables riders to correct their riding posture based on expert's one. The developed horseback riding platform make it possible to enjoy a horseback riding in all weather, and also can be used for systematic horseback riding training.

Development of a Compiler Teaching Model Using the Compiler Developing Environment Edu-IDEC (컴파일러 개발환경 Edu-IDEC를 이용한 컴파일러 수업모형 개발)

  • Kwon, Jung-Hoon;Park, Eun-Kyoung;Sung, Woo-Kyung;Kim, Hyun-Ju;Bae, Jong-Min
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.6
    • /
    • pp.33-43
    • /
    • 2013
  • Compiler and language implementation courses have long been recognized as an important subject in Computer Science curricula. It is because not only the knowledge for a compiler plays important roles in understanding programming languages and systems but compiler technologies can be used in many applications. However it requires much effort to teach effectively it due to limited resources and time restriction. We present a compiler teaching model using Edu-IDEC which is a development environment of educational compilers. Edu-IDEC is a tool on the robot platform. It uses the Eclipse plug-ins and has functions like compiler developing tools, a reference compiler, visualization tool of syntax tree, visualization tool of object language, NXT robot controllers, and its simulator. We also present the evaluation results for our model by applying it to an actual class.

  • PDF

Realtime Generation of Grid Map for Autonomous Navigation Using the Digitalized Geographic Information (디지털지형정보 기반의 실시간 자율주행 격자지도 생성 연구)

  • Lee, Ho-Joo;Lee, Young-Il;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2011
  • In this paper, a method of generating path planning map is developed using digitalized geographic information such as FDB(Feature DataBase). FDB is widely used by the Army and needs to be applied to all weapon systems of newly developed. For the autonomous navigation of a robot, it is necessary to generate a path planning map by which a global path can be optimized. First, data included in FDB is analyzed in order to identify meaningful layers and attributes of which information can be used to generate the path planning map. Then for each of meaningful layers identified, a set of values of attributes in the layer is converted into the traverse cost using a matching table in which any combination of attribute values are matched into the corresponding traverse cost. For a certain region that is gridded, i.e., represented by a grid map, the traverse cost is extracted in a automatic manner for each gird of the region to generate the path planning map. Since multiple layers may be included in a single grid, an algorithm is developed to fusion several traverse costs. The proposed method is tested using a experimental program. Test results show that it can be a viable tool for generating the path planning map in real-time. The method can be used to generate other kinds of path planning maps using the digitalized geographic information as well.

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

Hole Identification Method Based on Template Matching for the Ear-Pins Insertion Automation System (이어핀 삽입 자동화 시스템을 위한 템플릿 매칭 기반 삽입 위치 판별 방법)

  • Baek, Jonghwan;Lee, Jaeyoul;Jung, Myungsoo;Jang, Minwoo;Shin, Dongho;Seo, Kapho;Hong, Sungho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • In jewelry industry, the proportion of labor costs is high. Also, the production time and quality of products are highly varied depending on the workers' capabilities. Therefore, there is a demand from the jewelry industry for automation. The ear pin insertion automation system is the robot automatically inserts the ear pins into the silicone mold, and this automated system require accurate and fast hole detection method. In this paper, we propose optimal binarization method and a template matching method that can be applied in the ear pin insertion automation system. Through the performance test, it was shown that the applied method has an accuracy of 98.5% and 0.5 seconds faster processing speed than the Otsu binarization method. So, this automation system can contribute to cost reduction, work time reduction, and productivity improvement.

Development of roll bending process technology applied precision orthogonal feeding robot system (정밀 직교 피딩 로봇시스템 적용 롤 밴딩 공정 기술 개발)

  • Lim, Sang-Ho;Ahn, Sang-Jun;Yun, Gyeong-Yeol
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2022
  • This study evaluated the automated system of the roll bending process, which is one of the difficult processes. In the past, 20 cartridges were produced per hour. but Automation changed it to a process that produces 50 pieces per hour. The average value of production was 57.6 pieces per hour, error of repeatability was 0.03 mm, average roll diameter error value was 0.49 mm, average alignment error value was 0.09 mm and average process lead time was 43.21 seconds. This paper presented specific evaluation methods such as productivity, repeatability, defect rate, alignment defect rate, and process lead time. It is thought that the contents performed in this study will be helpful in the verification of other automation systems in the future.