• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.028 seconds

Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System (ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발)

  • Sin, Won-Sik;Oh, Se-Do;Kim, Young-Jin
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

Implementation of an improved real-time object tracking algorithm using brightness feature information and color information of object

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.21-28
    • /
    • 2017
  • As technology related to digital imaging equipment is developed and generalized, digital imaging system is used for various purposes in fields of society. The object tracking technology from digital image data in real time is one of the core technologies required in various fields such as security system and robot system. Among the existing object tracking technologies, cam shift technology is a technique of tracking an object using color information of an object. Recently, digital image data using infrared camera functions are widely used due to various demands of digital image equipment. However, the existing cam shift method can not track objects in image data without color information. Our proposed tracking algorithm tracks the object by analyzing the color if valid color information exists in the digital image data, otherwise it generates the lightness feature information and tracks the object through it. The brightness feature information is generated from the ratio information of the width and the height of the area divided by the brightness. Experimental results shows that our tracking algorithm can track objects in real time not only in general image data including color information but also in image data captured by an infrared camera.

Design of Two-axis Force Sensor for Robot's Finger

  • Kim, Gob-Soon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.66-70
    • /
    • 2001
  • This paper describes the design of a two-axis force sensor for robots finger. In detects the x-direction force Fx and y-direction force Fy simultaneously. In order to safely grasp an unknown object using the robots fingers, they should detect the force or gripping direction and the force of gravity direction, and perform the force control using the forces detected. Therefore, the robots hand should be made by the robots finger with tow-axis force sensor that can detect the x-direction force and y-direction force si-multaneously. Thus, in this paper, the two-axis force sensor for robots finger is designed using several parallel-plate beams. The equations to calculate the strain of the beams according to the force in order to design the sensing element of the force sensor are derived and these equations are used to design the aize of two-axis force sensor sensing element. The reliability of the derive equa-tions is verified buy performing a finite element analysis of the sensing element. The strain obtained through this process is compared to that obtained through the theory analysis and a characteristics test of the fabricated sensor. It reveals that the rated strains calculated from the derive equations make a good agreement with the results from the Finite Element Method analysis and from the character-istic test.

  • PDF

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

Design of Communication System for Intelligent Multi Agent Robot System (지능형 멀티 에이전트 로봇시스템을 위한 통신시스템의 설계)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.758-767
    • /
    • 2012
  • In the ad-hoc wireless network environment, that the fixed sensor nodes and the sensor nodes to move are mixed, as the number of the sensor nodes with mobility are getting more, the costs to recover and maintain the whole network will increase more and more. This paper proposed the CDSR (Cost based Dynamic Source Routing) algorithm being motivated from the typical DSR algorithm, that is one of the reactive routing protocol. The cost function is defined through measuring the cost which any sensor node pays to participate in the whole network for communication. It is also showed in this paper that the proposed routing algorithm will increase the efficiency and life of whole sensor network through a series of experiments.

Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method (Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘)

  • Lim, Yun-Won;Jeong, Jin-Su;An, Jin-Ung;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

A Path & Velocity Profile Planning Based on A* Algorithm for Dynamic Environment (동적 환경을 위한 A* 알고리즘 기반의 경로 및 속도 프로파일 설계)

  • Kwon, Min-Hyeok;Kang, Yeon-Sik;Kim, Chang-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.405-411
    • /
    • 2011
  • This paper presents a hierarchical trajectory planning method which can handle a collision-free of the planned path in complex and dynamic environments. A PV (Path & Velocity profile) planning method minimizes a sharp change of orientation and waiting time to avoid a collision with moving obstacle through detour path. The path generation problem is solved by three steps. In the first step, a smooth global path is generated using $A^*$ algorithm. The second step sets up the velocity profile for the optimization problem considering the maximum velocity and acceleration. In the third step, the velocity profile for obtaining the shortest path is optimized using the fuzzy and genetic algorithm. To show the validity and effectiveness of the proposed method, realistic simulations are performed.

A Control of Mobile Inverted Pendulum using Single Accelerometer (단일 가속도 센서에 의한 모바일 역진자 제어)

  • Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2010
  • This paper proposes a single accelerometer sensor control algorithm to mobile inverted pendulum, generally called 'Segway', and evaluates the performance of this system comparing to the conventional ones. The commercialized 'Prototype Segway-PT' is initially considered as a next-generation transport vehicle. However, this robot is operated by three gyroscopes and two accelerometers to control the posture and speed, and it requires the complex signal processing for fusing the two sets of data. As the result of this, the growth rate of market size of 'Segway' is slow because of its high price mainly. In this paper, the mobile inverted pendulum is operated by a single accelerometer to simplify the control system to lower the price. Low pass filter is one of the good sensors to reducing the variation of an accelerometer, but it has time delay. This time delay disturbs real-time mobile inverted pendulum control. Like this, other various algorithms are used for this system, but each one has its own weak point. So this paper proposes a new filtering method, median filter and EKF. Median filter is used to image processing to reject impulse elements like salt and pepper noise. As the major performance evaluation parameter for the accelerometer, the high-frequency to low frequency ratio from FFT (Fast Fourier Transform) is used. Effectiveness of the proposed algorithms has been verified through the real experiments and the results are demonstrated.

A Directional Perception System based on Human Detection for Public Guide Robots (공공 안내 로봇을 위한 인체 검출 기반의 방향성 감지 시스템)

  • Doh, Tae-Yong;Baek, Jeong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.481-488
    • /
    • 2010
  • Most public guide robots installed in public spots such as exhibition halls and lobbies of department store etc., have poor capability to distinguish the users who require services. As to provide suitable services, public guide robots should have a human detection system that makes it possible to evaluate intention of customers from their movement direction. In this paper, a DPS (Directional Perception System) is realized based on face detection technology. In particular, to catch human movement efficiently and reduce computational time, human detection technology using face rectangle, which is obtained from the human face, is developed. DPS determines which customer needs services of public guide robots by investigating the size and direction of face rectangle. If DPS is adapted, guide service will be provided with more satisfaction and reliability, and power efficiency also can be added up because public guide robots provide services only for the users who expresses their intentions of wanting services explicitly. Finally, through several experiments, the feasibility of the proposed DPS is verified.