• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.026 seconds

Implementation of a Smartphone Interface for a Personal Mobility System Using a Magnetic Compass Sensor and Wireless Communication (지자기 센서와 무선통신을 이용한 PMS의 스마트폰 인터페이스 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.48-56
    • /
    • 2015
  • In the paper, a smartphone-controlled personal mobility system(PMS) based on a compass sensor is developed. The use of a magnetic compass sensor makes the PMS move according to the heading direction of a smartphone controlled by a rider. The proposed smartphone-controlled PMS allows more intuitive interface than PMS controlled by pushing a button. As well, the magnetic compass sensor makes a role in compensating for the mechanical characteristics of motors mounted on the PMS. For adequate control of the robot, two methods: absolute and relative direction methods based on the magnetic compass sensor and wireless communication are presented. Experimental results show that the PMS is conveniently and effectively controlled by the proposed two methods.

Experimental Studies on Bouncing and Driving Control of a Robotic Vehicle for Entertainment and Transportation (운송 및 엔터테인먼트용 로봇차량의 바운스 및 주행제어 실험 연구)

  • Cho, Sung Taek;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.266-271
    • /
    • 2015
  • This paper presents the driving and bouncing control of a robotic vehicle for entertainment and transportation. The robotic vehicle is aimed to carry two passengers with a balancing mechanism by two wheels. To maximize the entertaining purpose, not only the balancing control performance but the bouncing control performance is implemented. Passengers can select different driving modes such as regular driving mode, balancing mode, and bouncing mode. Experimental studies of the balancing control performance as well as the bouncing control performance are conducted to see the feasibility as an entertainment robotic vehicle.

A Study on Torque Optimization of Planar Redundant Manipulator using A GA-Tuned Fuzzy Logic Controller (유전자 알고리즘으로 조정된 퍼지 로직 제어기를 이용한 평면 여자유도 매니퓰레이터의 토크 최적화에 관한 연구)

  • Yoo, Bong-Soo;Kim, Seong-Gon;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.642-648
    • /
    • 2008
  • A lot of researches on the redundant manipulators have been focused mainly on the minimization of joint torques. However, it is well-known that the most dynamic control algorithms using local joint torque minimization cause huge torques which can not be implemented by practical motor drivers. A new control algorithm which reduces considerably such a huge-required-torque problem is proposed in this paper. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar robot. Simulation results show that the proposed algorithm works well.

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

Trajectory Planning of a Soccer Ball Considering Impact Model of Humanoid and Aerodynamics (인간형 로봇의 임팩트 모델과 공기역학을 고려한 축구공의 궤적 계획)

  • So Byung Rok;Yi Byung-Ju;Choi Jae Yeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Usual human gait can be modeled as continual impact phenomenon that happens due to the topological change of the kinematic structure of the two feet. The human being adapts his own control algorithm to minimize the ill effect due to the collision with the environment. In order to operate a Humanoid robot like the human being, it is necessary to understand the physics of the impact and to derive an analytical model of the impact. In this paper, specially, we focus on impact analysis of the kicking motion in playing soccer. At the instant of impact, the external impulse exerted on the ball by the foot is an important property. Initially, we introduce the complete external impulse model of the lower-extremity of the human body and analyze the external impulses for several kicking postures of the lower-extremity. Secondly, a trajectory-planning algorithm of a ball, in which the initial velocity and the launch angle of the ball are calculated for a desired trajectory of the ball, will be introduced. The aerodynamic effect such as drag force and lift force is also considered. We carry out numerical simulation and experimentation to verify the effectiveness of the proposed analytical methodology.

A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

Bluetooth Network for Mobile System Control (이동 시스템 제어를 위한 블루투스 네트워크)

  • 임준홍;곽재혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1052-1057
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connectivity of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments, The bluetooth system both point-to point connection and point-to multipoint connection. In point-to multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The bluetooth standard ha s been suggested that bluetooth equipments can be used in the short-range, maximum 100 meters. It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.