• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.024 seconds

Area-Based Q-learning Algorithm to Search Target Object of Multiple Robots (다수 로봇의 목표물 탐색을 위한 Area-Based Q-learning 알고리즘)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we present the area-based Q-learning to search a target object using multiple robot. To search the target in Markovian space, the robots should recognize their surrounding at where they are located and generate some rules to act upon by themselves. Under area-based Q-learning, a robot, first of all, obtains 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to search for a target object while navigating in a unknown hallway where some obstacles were placed. In the end of this paper, we presents the results of three algorithms - a random search, area-based action making (ABAM), and hexagonal area-based Q-teaming.

A Study on Wavelet Neural Network Based Generalized Predictive Control for Path Tracking of Mobile Robots (이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구)

  • Song, Yong-Tae;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.457-466
    • /
    • 2005
  • In this paper, we propose a wavelet neural network(WNN) based predictive control method for path tracking of mobile robots with multi-input and multi-output. In our control method, we use a WNN as a state predictor which combines the capability of artificial neural networks in learning processes and the capability of wavelet decomposition. A WNN predictor is tuned to minimize errors between the WNN outputs and the states of mobile robot using the gradient descent rule. And control signals, linear velocity and angular velocity, are calculated to minimize the predefined cost function using errors between the reference states and the predicted states. Through a computer simulation for the tracking performance according to varied track, we demonstrate the efficiency and the feasibility of our predictive control system.

Development of a Redundant Shoulder Complex Actuated by Metal Wire Tendons (텐던 구동 기반 여유자유도를 가지는 로봇의 어깨 메커니즘 구현)

  • Choi, Taeyong;Kim, Doohyung;Do, Hyunmin;Park, Chanhun;Park, Dongil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.853-858
    • /
    • 2016
  • Cooperation and collaboration with robots are key functions of robotic utility that are currently developing. Thus, robots should be safe and resemble human beings to cope with these needs. In particular, dual-arm robots that mimic human kinetics are becoming the focus of recent industrial robotics research. Their size is similar to the size of a human adult; however, they lack natural, human-like motion. One of the critical reasons for this is the shoulder complex. Most recent dual-arm robots have only 2 degrees of freedoms (DOFs), which significantly limits the workspace and mobility of the shoulders and arms. Therefore, a redundant shoulder complex could be very important in new developments that enable new capabilities. However, constructing a kinematically redundant shoulder complex is difficult because of spatial constraints. Therefore, we propose a novel, redundant shoulder complex for a human-like robot that is driven by flexible wire tendons. This kinematically redundant shoulder complex allows human-like robots to move more naturally because of redundant DOFs. To control the proposed shoulder complex, a hybrid control scheme is used. The positioning precision has also been considered, and the ability of the shoulder complex to perform several human-like motions has been verified.

A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP) (RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구)

  • Choe Jae-Il;Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

Practical Intelligent Cleaning Robot Algorithm Based on Grouping in Complex Layout Space (복잡한 공간에서 그룹화 기반의 실용적 지능형 청소 로봇 알고리즘)

  • Jo Jae-Wook;Noh Sam-H.;Jeon Heung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.489-496
    • /
    • 2006
  • The random-based cleaning algorithm is a simple algorithm widely used in commercial vacuum cleaning robots. This algorithm has two limitations, that is, cleaning takes a long time and there is no guarantee that the cleaning will cover the whole cleaning area. This has lead to customer dissatisfaction. Thus, in recent years, many intelligent cleaning algorithms that takes into consideration information gathered from the cleaning area environment have been proposed. The plowing-based algorithm, which is the most efficient algorithm known to date when there are no obstacles in the cleaning area, has a deficiency that when obstacle prevail, its performance is not guaranteed. In this paper, we propose the Group-k algorithm that is efficient for that situation, that is, when obstacle prevail. The goal is not to complete the cleaning as soon as possible, but to clean the majority of the cleaning area as fast as possible. The motivation behind this is that areas close to obstacles are usually difficult for robots to handle, and hence, many require human assistance anyway In our approach, obstacles are grouped by the complexity of the obstacles, which we refer to as 'complex rank', and then decide the cleaning route based on this complex rank. Results from our simulation-based experiments show that although the cleaning completion time takes longer than the plowing-based algorithm, the Group-k algorithm cleans the majority of the cleaning area faster than the plowing algorithm.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control (BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석)

  • Kim, Dong-Eun;Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.172-177
    • /
    • 2013
  • With Brain Computer Interface (BCI) system, a person with disabled limb could use this direct brain signal like electroencephalography (EEG) to control a device such as the artifact arm. The precise force control for the artifact arm is necessary for this artificial limb system. To understand the relationship between control EEG signal and the gripping force of hands, We proposed a study by measuring EEG changes of three grades (25%, 50%, 75%) of hand grip MVC (Maximal Voluntary Contract). The acquired EEG signal was filtered to obtain power of three wave bands (alpha, beta, gamma) by using fast fourier transformation (FFT) and computed power spectrum. Then the power spectrum of three bands (alpha, beta and gamma) of three classes (MVC 25%, 50%, 75%) was classified by using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The result showed that the power spectrum of EEG is increased at MVC 75% more than MVC 25%, and the correct classification rate was 52.03% for left hand and 77.7% for right hand.

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

A Robotcar-based Proof of Concept Model System for Dilemma Zone Decision Support Service (딜레마구간 의사결정 지원 서비스를 위한 로봇카 기반의 개념검증 모형 시스템)

  • Lee, Hyukjoon;Chung, Young-Uk;Lee, Hyungkeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Recently, research activities to develop services for providing safety information to the drivers in fast moving vehicles based on various wireless network technologies such as DSRC (Dedicated Short Range Communication), IEEE 802.11p WAVE (Wireless Access for Vehicular Environment) are widely being carried out. This paper presents a proof-of-concept model based on a robot-car for Dilemma Zone Decision Assistant Service using the wireless LAN technology. The proposed model system consists of a robot-car based on an embedded Linux OS equipped with a WiFi interface and an on-board unit emulator, an Android-based remote controller to model a human driver interface, a laptop computer to run a model traffic signal controller and signal lights, and a WiFi access point to model a road-side unit.

How Does the Media Deal with Artificial Intelligence?: Analyzing Articles in Korea and the US through Big Data Analysis (언론은 인공지능(AI)을 어떻게 다루는가?: 뉴스 빅데이터를 통한 한국과 미국의 보도 경향 분석)

  • Park, Jong Hwa;Kim, Min Sung;Kim, Jung Hwan
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.175-195
    • /
    • 2022
  • Purpose The purpose of this study is to examine news articles and analyze trends and key agendas related to artificial intelligence(AI). In particular, this study tried to compare the reporting behaviors of Korea and the United States, which is considered to be a leader in the field of AI. Design/methodology/approach This study analyzed news articles using a big data method. Specifically, main agendas of the two countries were derived and compared through the keyword frequency analysis, topic modeling, and language network analysis. Findings As a result of the keyword analysis, the introduction of AI and related services were reported importantly in Korea. In the US, the war of hegemony led by giant IT companies were widely covered in the media. The main topics in Korean media were 'Strategy in the 4th Industrial Revolution Era', 'Building a Digital Platform', 'Cultivating Future human resources', 'Building AI applications', 'Introduction of Chatbot Services', 'Launching AI Speaker', and 'Alphago Match'. The main topics of US media coverage were 'The Bright and Dark Sides of Future Technology', 'The War of Technology Hegemony', 'The Future of Mobility', 'AI and Daily Life', 'Social Media and Fake News', and 'The Emergence of Robots and the Future of Jobs'. The keywords with high centrality in Korea were 'release', 'service', 'base', 'robot', 'era', and 'Baduk or Go'. In the US, they were 'Google', 'Amazon', 'Facebook', 'China', 'Car', and 'Robot'.