• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.031 seconds

Bio-mimetic Quadruped Walking Robot with Autonomous Eating Function (자율섭취기능을 갖는 생체 모방형 4족 보행로봇)

  • Park Se-Hoon;Kim Kyung-Ho;Jung Kil-Woong;Kim Goan-Hun;Lee Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • This paper introduces a new entertainment robot called ELIRO-II(Eating Lizard RObot version 2)which is a bio-mimetic quadruped walking robot with autonomous eating function. We focus on the realization of the behavior of an animal, i.e., wandering around to find food and eating food. The ELIRO-II is modeled after a lizard, which has four legs, 2-DOF waist-joint, an eye part, a mouth part and a stomach part. The effectiveness of the developed robot is shown through real experiments.

Least Squares Velocity Estimation of a Mobile Robot Using a Regular Polygonal Array of Optical Mice (정다각형 배열의 광 마우스를 이용한 이동 로봇의 최소 자승 속도 추정)

  • Kim, Sung-Bok;Jeong, Il-Hwa;Lee, Sang-Hyup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.978-982
    • /
    • 2007
  • This paper presents the velocity estimation of a mobile robot using a regular polygonal array of optical mice that are installed at the bottom of a mobile robot. First, the basic principle of the proposed velocity estimation method is explained. Second, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Third, for a given set of optical mouse readings, the mobile robot velocity is estimated based on the least squares solution to the obtained system. Finally, simulation results are given to demonstrate the validity of the proposed velocity estimation method.

Knee-wearable Robot System Using EMG signals (근전도 신호를 이용한 무릎 착용 로봇시스템)

  • Cha, Kyung-Ho;Kang, Soo-Jung;Choi, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.

Omni-tread Type Snake Robot: Mathematical Modeling and Implementation (Omni-tread 뱀 로봇 모델링 및 개발)

  • Oh, Sang-Jin;Lee, Ji-Hong;Choi, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1022-1028
    • /
    • 2008
  • This article presents an omni-tread snake robot that designed to locomote on narrow space and rough terrain. The omni-tread snake robot comprises three segment, which are linked to each other by 2 degrees of freedom joints for the pitch and yaw motion. Moving tracks on all four sides of each segment guarantee propulsion even when the robot rolls over. The 2 DOF joint are actuated by 2 servo motors which produce sufficient torque to lift the one leading or trailing segments up and overcome obstacles. This paper applies articulated steering technique to get omni-tread snake robot's kinematics model.

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition (행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석)

  • 이지홍;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

Study of a Two-wheel Mobile Robot with Linear Workspace Extension Structures (선형 작업 영역 확장 구조를 가진 두 바퀴 구동 모바일 로봇에 대한 연구)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a two-wheel balancing mobile robot with linear workspace extension structures. The two-wheel mobile robot has two linear motions at the waist and shoulder to have extended workspace. The linear motion of the waist and shoulder provides some structural advantages. A dynamic equation of the simplified robot system is derived. Simulation studies of the position control of the robot system are performed based on the dynamic equations. The dynamic relationship between a two-wheel mobile system and linear extension mechanism is observed by simulation studies.

A Study of the Obstacle Avoidance for a Quadruped Walking Robot Using Genetic and Fuzzy Algorithm

  • Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.228-231
    • /
    • 2003
  • This paper presents the leg trajectory generation for the quadruped robot with genetic-fuzzy algorithm. To have the nobility even at uneven terrain, a robot is able to recognize obstacles, and generates moving path of body that can avoid obstacles. This robot should have its own avoidance algorithm against obstacles, forwarding to target without collision. During walking period, n robot recognizes obstacle from external environment with a PSD and some interface, and this obstacle information is converted into proper the body rotation angle by fuzzy inference engine. After this process, we can infer the walking direction and walking distance of body, and finally can generate the optimal Beg trajectory using genetic algorithm. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

chaotic behavior analysis in the mobile robot : the case of Arnold equation

  • Kim, Youngchul;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.110-113
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Chaotic behavior analysis in the mobile robot : the case of Chuas equation

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.5-8
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Chua's equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation

  • PDF