• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.027 seconds

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF

Design and Walking of Child-typed Humanoid Robot (아동형 휴머노이드 로봇의 설계 및 보행)

  • Lee, Ki-Nam;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.248-253
    • /
    • 2015
  • In order to adapt to human's life and perform missions, a humanoid robot needs a height at least similar with children's. In this paper, we proposed a humanoid robot which is like a child who is taller than 1m. We presented showing the humanoid robot's kinematics, designing of a three-dimensional model, developing mechanisms, and the hardware structures using servo motors and compact size PC. Through this process, we designed and manufactured child humanoid robot 'CHARLES(Cognitive Humanoid Autonomous Robot with Learning and Evolutionary Systems)' that is robot is 1m 10cm tall and 8.16kg in weight. For robot's walking, we applied to ZMP-based walking technique and the creation algorithm is applied for walking patterns. Through experiments, we analyzed walking patterns according to the creation and changing parameter values.

Minimum-Time Algorithm for Intercepting an Object by the Robot on Conveyor System (컨베이어 상의 물체 획득을 위한 로봇의 최소시간 알고리즘)

  • Shin, Ik-Sang;Moon, Seung-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.795-801
    • /
    • 2005
  • This paper focuses on planning strategies for object interception by the robotic manipulator on a conveyor system in minimum time. The goal is that the robot is able to intercept object with minimum time on a conveyor line that moves at a given speed. The search algorithm for minimum time solution is given in detail for all possible cases for initial locations of robot. Simulations results show the validity of the given algorithm.

Estimating reliability of reactor inspection robot using Bayesian Belief Nets

  • Eom, Heung-Seop;Kim, Jae-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.106.1-106
    • /
    • 2002
  • $\textbullet$ Current status of reliability estimation techniques for robot systems $\textbullet$ Description of Bayesian Belief Nets(BBN) With an example $\textbullet$ Description of proposed reliability estimation method which combines all information necessary $\textbullet$ Application example of the method : the reactor inspection robot $\textbullet$ Results from the reliability estimation of reactor inspection robot $\textbullet$ Discussion on the proposed method (advantages and problems) $\textbullet$ Conclusion

  • PDF

DNN-Based Adaptive Optimal Learning Controller for Uncertain Robot Systems (동적 신경망에 기초한 불확실한 로봇 시스템의 적응 최적 학습제어기)

  • 정재욱;국태용;이택종
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.1-10
    • /
    • 1997
  • This paper presents an adaptive optimal learning controller for uncertian robot systems which makes use fo simple DNN(dynamic neural network) units to estimate uncertain parameters and learn the unknown desired optimal input. With the aid of a lyapunov function, it is shown that all that error signals in the system are bounded and the robot trajectory converges to the desired one globally exponentially. The effectiveness of the proposed controller is hsown by applying the controller to a 2-DOF robot manipulator.

  • PDF

Control of Walking Robot based on Reinforcement Learning and Manifold Control (강화학습과 메니폴드 제어기법을 이용한 걷는 로봇의 제어)

  • Mun, Yeong-Jun;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.135-138
    • /
    • 2008
  • 최근 인간을 모방하는 휴머노이드 로봇(Humanoid robot)에 대한 관심이 증가함에 따라, 기계공학, 생체공학, 제어이론 등 여러 분야에서 관련 연구가 활발히 진행되고 있다. 이에 본 논문에서는 액츄에이터(Actuator)가 없이 경사진 지면을 걸을 수 있는 두 발을 가진 패시브 로봇(Passive robot)을 대상으로 강화학습과 메니폴드(Manifold control) 기법을 사용하여 안정적으로 걸을 수 있도록 제어기(Controller)를 설계하는 방안을 고려한다.

  • PDF

Supervisory Control of Line Tracking Mobile Robot Using Fuzzy Petri Net (퍼지페트리네트에 의한 선 추적 이동 로봇의 관리제어)

  • 최경조;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.180-186
    • /
    • 1998
  • This paper deals with the application of fuzzy Petri net to control the line tracking mobile robot. Comparing with the Petri net and the fuzzy Petri net, the fuzzy Petri net model is more effective than the use of Petri net, so the line tracking mobile robot has a little shake and also has a little moving distance than one of using the Petri, And thus the mobile robot shows less energy consumption

  • PDF

Robot Off-Line Programming System for Polishing Task (금형 연마용 로보트의 Off-Line Programming System)

  • Guk, Geum-Hwan;Choe, Gi-Bong
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.33-39
    • /
    • 1990
  • In the existing robot programming methods, off-line method because important role of programming because of improvement of hardware and softeare of PC. The purpose of this study is to develop practical robot programming system for polishing task using PC. In the first place, we have investigated the existing robot programming systems, and derived the requirement of this programming system from the existing systems. And we have decied the structure of this system. After that, we have developed this system. Using Windows software, this programming system has man/machine interface function. Therefore users can use easily and quickly.

  • PDF

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.