• Title/Summary/Keyword: robot systems

Search Result 3,643, Processing Time 0.041 seconds

Continuous Task Performance for Mobile Manipulator Using Task-Oriented Manipulability Measure (Task-Oriented Manipulabi1ity Measure를 이용한 이동매니플레이터의 연속작업 수행)

  • 진기홍;강진구;주진화;허화라;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.401-401
    • /
    • 2000
  • A mobile manipulator-a serial connection of a mobile robot and a task robot is redundant by itself. Using its redundant freedom, a mobile manipulator can move in various modes, and perform dexterous tasks. An interesting question,

  • PDF

Color-based Face Detection for Alife Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.2-49
    • /
    • 2001
  • In this paper, a skin-color model in the HSV space was developed. Based on it, face region can be separated from other parts in a image. Face can be detected by the methods of Template and eye-pair. This realized in our robot.

  • PDF

Intelligent rehabilitation robotic system for the handicapped and the elderly-KARES (장애인과 노약자를 위한 지능형 재활 로봇 시스템(KARES))

  • 송원경;김종명;윤용산;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1541-1544
    • /
    • 1997
  • The rehailitation robot, one of the service robot, is the important area in the service automation. In the paper, we describe the overall configuration of KARES(KAIST Rehabilitation Engineering System), which is an intellingent rehabilitaion robotic system designed to assist the independent livelihood of the handicapped and the eldrly. KARES consists of the 6 degree of freedom robot arm mounted on a wheelchair, the controller ofr the arm, sensors to perceive environment, and user interface. Basic desired hobs in KARES are gripping the target object and moving it to the user's face for eating, drinking, or cooperation work wiht the mouth. Currently, the manual operation of the arm is available for gripping to target objects. The autonomous functionality will be ginven for the facilities of the human operator.

  • PDF

Evaluation of dynamical performance of 3 dimensional multi-arm robot (3차원 다중 로봇의 동적 성능 평가)

  • 김기갑;김충영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.756-759
    • /
    • 1997
  • Multi-arm cooperation robot system is required for more specific and dextrous jobs such as transferring very large or heavy objects, or grasping work piece while processing on it. There is little research on 3-dimensional multi-arm robot. Here we propose two performance indices presenting isotropy of end-effector's acceleration and velocity capabilities with constraints of joint torques, that is Isotropic Acceleration Radius [IAR] and Isotropic Velocity Radius [IVRI. Also the procedure to find 3-dimensional IAR, IVR is proposed, where available acceleration set concept is used. The case of 3-dimensional two 3 joint robot system was simulated and the distributions of IAR, IVR was studied.

  • PDF

Servo control of mobile robot using vision system (비젼시스템을 이용한 이동로봇의 서보제어)

  • 백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.540-543
    • /
    • 1997
  • In this paper, a precise trajectory tracking method for mobile robot using a vision system is presented. In solving the problem of precise trajectory tracking, a hierarchical control structure is used which is composed of the path planer, vision system, and dynamic controller. When designing the dynamic controller, non-ideal conditions such as parameter variation, frictional force, and external disturbance are considered. The proposed controller can learn bounded control input for repetitive or periodic dynamics compensation which provides robust and adaptive learning capability. Moreover, the usage of vision system makes mobile robot compensate the cumulative location error which exists when relative sensor like encoder is used to locate the position of mobile robot. The effectiveness of the proposed control scheme is shown through computer simulation.

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Vibration Suppression Control for an Articulated Robot;Effects of Model-Based Control Integrated into the Position Control Loop

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2016-2021
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration with respect to a waist axis of an articulated robot. This control technique is based on a model-based control in order to establish the damping effect on the driven mechanical part. The control model is composed of reduced-order electrical and mechanical parts related to the velocity control loop. The parameters of the control model can be obtained from design data or experimental data. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration. This control method is applied to an articulated robot regarded as a time-invariant system. The effectiveness of the model-based control integrated into the position control loop is verified by simulations. Simulations show satisfactory control results to reduce the transient vibration at the end-effector.

  • PDF