• Title/Summary/Keyword: robot sensing

Search Result 300, Processing Time 0.036 seconds

A Novel Robot Sensor System Utilizing the Combination Of Stereo Image Intensity And Laser Structured Light Image Information

  • Lee, Hyun-Ki;Xingyong, Song;Kim, Min-Young;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.729-734
    • /
    • 2005
  • One of the important research issues in mobile robot is how to detect the 3D environment fast and accurately, and recognize it. Sensing methods of utilizing laser structured light and/or stereo vision are representatively used among a number of methodologies developed to date. However, the methods are still in need of achieving high accuracy and reliability to be used for real world environments. In this paper to implement a new robotic environmental sensing algorithm is presented by combining the information between intensity image and that of laser structured light image. To see how effectively the algorithm applied to real environments, we developed a sensor system that can be mounted on a mobile robot and tested performance for a series of environments.

  • PDF

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Development of a Stewart Platform-based 6-axis Force Sensor for Robot Fingers

  • Luo, Minghua;Shimizu, Etsuro;Feifei, Zhang;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1814-1819
    • /
    • 2005
  • This paper describes the development of a Stewart platform-based robot force sensor with distinctive structure of ball joints. The number of ball joints is only a half of the similar style sensors, so it is possible to reduce size and weight of the sensor. The structure of ball joint is described and discussed. Furthermore, we use strain gauges, but not liner voltage differential transformers, as sensing elements, in order to reduce size and weight of the sensor. It is also proposed that beams are replaced with pipes as sensing elements of the sensor. The ball joints and sensing elements with pipes can effectively reduce the error of the sensor. A geometric analysis model is also proposed. The external force and its moment can be measured with this model. Moreover, the performance of this sensor was tested. The test results conducted to evaluate the sensing capability of the sensor is reported and discussed.

  • PDF

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

Current trends in force/torque sensing

  • Morris, Keith-A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.606-608
    • /
    • 1989
  • Force/torque sensors are now providing widespread practical solutions to manufacturing problems, particularly in the area of automated assembly. The current state of the industry is discussed, including the evolution of transducer and controller design, and the trend of robot manufacturers to integrate force/torque sensors into their robot systems thereby greatly improving cycle time and simplifying the application development task for the end-user. Current and future application areas are discussed as well as the benefits of force/torque sensing.

  • PDF

Trends of Sensor-based Intelligent Arc Welding Robot System (센서기반 지능형 아크 용접 로봇 시스템의 동향)

  • Joung, Ji Hoon;Shin, Hyeon-Ho;Song, Young Hoon;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1051-1056
    • /
    • 2014
  • In this paper, we introduce an intelligent robotic arc welding system which exploits sensors like as LVS (Laser Vision Sensor), Hall effect sensor, voltmeter and so on. The use of industrial robot is saturated because of its own limitation, and one of the major limitations is that industrial robot cannot recognize the environment. Lately, sensor-based environmental awareness research of the industrial robot is performed actively to overcome such limitation, and it can expand application field and improve productivity. We classify the sensor-based intelligent arc welding robot system by the goal and the sensing data. The goals can be categorized into detection of a welding start point, tracking of a welding line and correction of a torch deformation. The Sensing data can be categorized into welding data (i.e. current, voltage and short circuit detection) and displacement data (i.e. distance, position). This paper covers not only the explanation of the each category but also its advantage and limitation.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

Development of Arm Motion Sensing System Using Potentiometer for Robot Arm Control (로봇 팔의 제어를 위한 포텐셜미터를 이용한 팔 움직임 감지 시스템 개발)

  • Park, Ki-Hoon;Park, Seong-Hun;Yoon, Tae-Sung;Kwak, Gun-Pyong;Ann, Ho-Kyun;Park, Seung-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.872-878
    • /
    • 2012
  • In this paper, an arm motion sensing system using potentiometer is developed. Most motion sensing systems use optical method for the quality of motion data. The optical method needs much cost for manufacturing capture system and takes much time for correcting the captured data. And mechanical method entails relativity low cost, but it uses the wires and takes much time for correcting the data like the optical method. For solving the problems, in this paper, an arm motion sensing system is newly developed using low cost potentiometer and based on the suggested simple calculation method for the joint angles and the angular velocities. For the verification of the performance of the developed system, practical experiments were executed using real human arm motion and a robot arm. The experimental results showed that the motion of the robot arm controlled by the output of the developed motion sensing system is much similar with the motion of human arm.