• Title/Summary/Keyword: robot platform

Search Result 414, Processing Time 0.02 seconds

Parallel Implementations of Digital Focus Indices Based on Minimax Search Using Multi-Core Processors

  • HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.542-558
    • /
    • 2023
  • A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.

A study on improvement of policy of artificial intelligence for national defense considering the US third offset strategy (미국의 제3차 상쇄전략을 고려한 국방 인공지능 정책 발전방안)

  • Se Hoon Lee;Seunghoon Lee
    • Industry Promotion Research
    • /
    • v.8 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • This paper addressed the analysis of the trend and direction of the US defense strategy based on their third offset strategy and presented the practical policy implication of ensuring the security of South Korea appropriately in the future national defense environment. The countermeasures for the development ability of advanced weapon systems and secure core technologies for Korea were presented in consideration of the US third offset strategy for the future national defense environment. First, to carry out the innovation of national defense in Korea based on artificial intelligence(AI), the long-term basis strategy for the operation of the unmanned robot and autonomous weapon system should be suggested. Second, the platform for AI has to be developed to obtain the development of algorithms and computing abilities for securing the collection/storage/management of national defense data. Lastly, advanced components and core technologies are identified, which the Korean government can join to develop with the US on a basis of the Korea-US alliance, and the technical cooperation with the US should be stronger.

A Study on the Concept of Military Robotic Combat Using the 4th Industrial Revolution Technology (4차 산업혁명 기술을 활용한 군사로봇 전투개념 연구)

  • Sang-Hyuk Park;Seung-Pil Namgung;Sung-Kwon Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.397-401
    • /
    • 2023
  • The study presents milestones for the Korean military to win the future battlefield based on the 4th Industrial Revolution. Chapter 1 deals with the necessity of research on how advanced countries operate industrial technology in the defense sector based on the 4th Industrial Revolution. Chapter 2 examines the current technology status of the 4th Industrial Revolution in Korea and the concept of Korean combat. Chapter 3 analyzes the military robotic technology of advanced military countries through examples of unmanned combat robots in the United States, Israel, and Germany. In the end, in future battles, it will be possible to dominate the battlefield only by taking a leap into a super-connected and super-intelligent military based on a high-tech platform. Our military should also research and develop military robotics in accordance with the characteristics of each combat system, and further expand and develop the concept of combat performance to protect our core capabilities and centers from enemy cyber, electronic warfare, and space attacks.

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.