
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, Feb. 2023                                      542 
Copyright ⓒ 2023 KSII 

 
 
A preliminary version of this paper was presented at APIC-IST 2022, and was selected as an outstanding paper. 
 
http://doi.org/10.3837/tiis.2023.02.014                                                                                                                 ISSN : 1976-7277 

Parallel Implementations of Digital Focus 
Indices Based on Minimax Search Using 

Multi-Core Processors 
 

HyungTae Kim1*, Duk-Yeon Lee, Dongwoon Choi, Jaehyeon Kang and Dong-Wook Lee2 
1 Digital Transformation R&D Department, Korea Institute of Industrial Technology 

Ansan, Gyeonggi, 15588, Korea 
[e-mail: htkim@kitech.re.kr] 

2 Applied Robot R&D Department, Korea Institute of Industrial Technology 
Ansan, Gyeonggi, 15588, Korea 

 [e-mail: kitech.re.kr] 
*Corresponding author: HyungTae Kim 

 
Received August 3, 2022; revised September 13, 2022; revised November 4, 2022; accepted December 4, 2022; 

published February 28, 2023 

 
Abstract 

 
A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and 
smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, 
its processing time can be reduced using a general processing unit (GPU) and a multi-core 
processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) 
are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based 
on a histogram; however, the parallel computation of the histogram is conventionally 
inefficient because of the bank conflict in shared memory. The parallel architectures of RA 
and CT are constructed using parallel reduction for MSA, which is performed through parallel 
relative rating of the image pixel pairs and halved the rating in every step. The array size is 
then decreased to one, and the minimax is determined at the final reduction. Kernels for the 
architectures are constructed using open source software to make it relatively platform 
independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna 
images of various sizes based on the resolutions of industrial cameras. The performance of the 
kernels for the DFIs was investigated in terms of processing speed and computational 
acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a 
higher performance. 
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1. Introduction 

Multiple image sensors are mounted on various mobile devices and automatic focus (AF) 
has become an essential function for maximizing camera usability. The AF determines the 
focal position from the variation in the digital focus index (DFI) during actuating camera 
optics. DFI originated from the telescope in astronomy [1] and the microscope in 
bioengineering [2]; the DFI is derived from optical transfer functions and used to evaluate 
high-frequency elements in an image [3]. The variation in the DFI during AF forms a 
continuous and smooth curve with a single local maximum. Thus, the AF determines the focal 
position at the maxima of the DFI curve while actuating the camera optics [4]. The application 
of DFI is not limited to AF, and it can also be applied to various areas in machine vision, such 
as image fusion, feature extraction and stitching [5][6].  
Further, AF is time-consuming because of the massive number of computational operations on 
the DFI. Hundreds of mega-pixel images are acquired and the DFI is sequentially computed 
during AF. Conventional DFI is equated as the sum of many iterative mathematical operations 
for all pixels [7]. Commercial devices reduce the computational requirement of the AF by 
limiting the focal area to a region-of-interest (ROI), rather than by accelerating the DFI 
equations. However, only a few studies on the computational acceleration of DFI have been 
conducted. Jin devised a hardware accelerator linking a camera with a framegrabber. The 
hardware accelerator was constructed using a field-programmable gate-array (FPGA) which 
lowered the computational load on the PC [8] but the hardware cost was relatively high 
because of various connection interfaces. Thus, the hardware approach is inconvenient for 
supporting the diverse formulations of DFIs. The software approach uses a general processing 
unit (GPU) platform to parallelize the DFI computation, and computed unified device 
architecture (CUDA) is applied to accelerate the Tenenbaum gradient [9]. The GPU platform 
is available on a PC or an embedded device. Another parallel device is the multi-core 
processor (MCP), which has stronger but fewer cores than a GPU. All these parallel devices 
are effective for lowering the computational cost of image processing, and therefore, they have 
been introduced in machine vision, such as in stereo vision [10], image compression [11], and 
video analysis [12]. However, the parallel architecture for DFI is rarely discussed even though 
its processing cost is high [9][13].  
Range algorithm (RA) and image contrast (CT) are conventional DFIs. RA and CT in the 
current microcopy are based on serial programming. However, the processing time becomes 
crucial for automatic focus as a resolution of a commercial camera reaches dozens of mega 
bytes. Thus, parallel architectures of RA and CT were proposed in this paper for reducing the 
processing time of AF. A parallel architecture was designed to accelerate the minimax search 
in RA and CT, and parallel kernels were constructed for a GPU and MCP using cross-platform 
open-source softwares. The performance of the kernels was verified using various image sizes 
of industrial cameras. The rest of this paper is organized as follows: Section 2 reviews RA and 
CT, Section 3 describes the parallel architecture and Section 4 presents the acceleration 
performance of the experiments. Conclusions are presented in Section 5.  

2. Background 
DFIs are usually derived from the gradient between image pixels because pixel changes occur 
in high frequency content and object edges [3]. The general focus function is defined as the 
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following equation.  
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = ∬𝐸𝐸 ��𝜕𝜕

𝑛𝑛𝐼𝐼(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥𝑛𝑛

� − 𝜃𝜃�
𝑚𝑚
𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥          (1) 

 
where F, I, θ and E represent the DFI, gray level in a digital image at (x,y), threshold, and 
rectified linear function, respectively. The focus position zf is determined at the maximum of 
the DFI curve after moving the working distance between the camera and the object z. Images 
are acquired, and the DFIs are calculated at every small increment Δz. 
 

𝑧𝑧𝑓𝑓 = max
𝑧𝑧

𝐹𝐹(𝐼𝐼𝑧𝑧)         (2) 
 
In addition to the gradient methods, DFIs are obtained using statistical, intuitive and histogram 
approaches. In this study, the RA and CT are obtained from the minimum and maximum gray 
levels in the histogram. RA in the previous study is applied to fluorescence microscopy [14] 
and 3D reconstruction [15], and it is evaluated from the difference between the minimum and 
maximum gray levels [16].  
 

𝐹𝐹𝑅𝑅𝑅𝑅 = max(𝑘𝑘|𝐻𝐻𝑘𝑘 > 0) − min(𝑘𝑘|𝐻𝐻𝑘𝑘 > 0)         (3) 
 
where, k and H represent the gray level and histogram of I, respectively. A defocused image 
contains a single gray shade, whereas an in-focus image contains diverse gray levels. 
Therefore RA increases when an image plane approaches a focal position.  
The CT originated from the Michelson contrast, which evaluates the gray-level diversity in a 
focused image [17][18]. CT is based on periodic optical responses derived from the Michelson 
formula, and it is measured from the minimum and maximum luminance as [19]. 
 

𝐹𝐹𝐶𝐶𝐶𝐶 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

                (4) 
 
where L represents luminance. The concepts of these methods were utilized to maximize the 
contrast of target images in bio-medical imaging. The contrast ratio of the human skin tissue is 
measured from the gray levels of the vein and skin areas [20]. The cell images of the dark field, 
bright field, and phase contrast are obtained using a concept similar to equation (4) [21][22]. 
The minimum and maximum luminance values in an image are equal to the minimum and 
maximum gray levels in the histogram obtained using equation (3). Thus, RA and CT 
originated from different theories but can share the processing values of a histogram by 
finding the minimum and maximum gray levels. The processing costs of RA and CT are lower 
than those of other DFIs; therefore RA and CT are used to verify the focusing performance of 
the microscope. Previous studies focused on the verification of the focusing theory and 
accuracy and the processing cost was not considered. 

3. Parallel Implementation 
A GPU and an MCP are available for parallel processing; DFIs, however, are conventionally 
developed using serial processing conditions. As the camera resolution increases, serial 
processing exposes the limit of processing time. Thus, parallel processing using a GPU and an 
MPC is one of the solutions to lower the processing cost of the DFI. The sequence of parallel 
processing for the DFI is shown in Fig. 1. A single-core assesses data and computes a focus 
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function on each pixel in the serial processing case. In case of the parallel processing, the 
image data is partitioned to subsets and the serial processing is allocated to each of the 
processors. The DFI is then obtained by gathering the results of the subsets. The parallel 
processing of the DFI involves focus function and reduction. The focus function evaluates the 
degree of focus in each pixel, whereas reduction gathers and summarizes the evaluated results 
of the full set of pixels. 
 

 
Fig. 1. Processing sequences of DFI in serial and parallel processing. 

 

3.1 Parallel reduction  
RA and CT commonly search for the minimum and maximum gray levels in an image. A 
parallel search for minimax can accelerate the computation of RA and CT, and a parallel 
search for minimax can be implemented using parallel reduction. Parallel reduction is a 
fundamental architecture for obtaining the sum and basic arithmetic from large-scale data [23].  
Further, image I(x,y) is a large dataset, and the image can be linearly mapped into a 1D array, 
A(p). The array size amounts to millions but because the processing cores of the GPU and 
MCP are limited, the array should be partitioned according to the number of parallel cores N. 
Ai, the subsets of A, can be organized from various combinations based on the reduction 
structures; the following conditions must be satisfied: 
 

⋃ 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑛𝑛
𝑖𝑖=1 𝐴𝐴𝑖𝑖 ≠ ∅ 𝐴𝐴𝑖𝑖⋂𝐴𝐴𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗)              (5) 

 
Parallel reduction obtains a scalar result from the set, array size and arbitrary arithmetic 
operator, ⨀ [24]. 
 

𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴,𝑁𝑁,⨀)        (6) 
 
The parallel reduction in Equation (6) can be further formulated by associating the subsets as 
[25]. 
 

𝑟𝑟 = 𝐴𝐴1⨀⋯⨀𝐴𝐴𝑁𝑁 = ∐ ⨀𝑁𝑁
𝑖𝑖=1 𝐴𝐴𝑖𝑖             (7) 

 
In the minimax search problem, the binary operator, ⨀, is substituted with comparison 
operators, such as < and >. The RA and CT values are calculated from rmin and rmax after 
reduction. 
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3.2 Parallel architecture 
The parallel architecture for RA and CT was constructed to search for both the minimum and 
maximum gray level in an image, as shown in Fig. 2. The parallel architecture comprises 
preliminary and reduction steps. The preliminary step involves performing minimax search in 
subsets; the reduction step determines the minimum and maximum gray level of an image 
from the subsets. They are partitioned by allocating data addresses linearly to the parallel cores 
when the pixel data in an image were loaded onto parallel memory. Normally, all pixel data in 
an image are converted into decimal data. When a mask image is additionally applied to limit 
the processing area of an image, the image data on the active pixels of the mask are converted. 
The open sources for machine vision provide multiple data formats, and therefore, the parallel 
architecture is implemented using a template variable for a variable data format such as 
unsigned char, short, float, and double.  
 

Fig. 2. Processing flow in the parallel architecture of range algorithm and contrast. 
 
After determining the minima and maxima in the subsets, the conventional parallel reduction 
was applied to search for the extreme values of an image [26]. The parallel reduction 
iteratively performs specific mathematical operations on pairs of elements in the array and 
transfers the result to the front element. Therefore, the results of the subsets are substituted into 
a parallel reduction to determine the minima and maxima from pairs of subsets. The 
eliminated elements of pairs after the decision are discarded, and the surviving elements are 
transferred to the front elements. The widths of the surviving elements are halved in every 
iteration. The iteration was terminated when the width was 1 and the result was placed at the 
head element of the array. Fig. 3 shows the concept of parallel reduction in a parallel 
architecture. The band of threads is much smaller than the number of pixels, thus the image is 
sliced into subsets by the band width and then the parallel reduction is iteratively performed on 
the subsets. The parallel reduction is applied to the local minima and maxima of the subsets to 
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find the global minimum and maximum of the image. The RA and CT were then calculated 
using the global minimum and maximum values. 

4. Experiments 
Previous studies implemented algorithms on one parallel platform such as CUDA or OpenMP 
[27][28]. In this study six parallel platforms were constructed using C++, OpenCV, CUDA, 
OpenCL, OpenMP, and TBB for RA and CT. The C++ subroutine is based on serial 
processing using a single CPU task. Further, the OpenCV subroutine is implemented using the 
cv::minmaxLoc function and used as a reference for verification. CUDA and OpenCL were 
applied to GPU subroutines, and OpenMP and TBB were employed for the MCP subroutines. 
The parallel architecture in Fig. 3 was adopted to the GPU subroutines. The number of MCP 
cores was much smaller than that of the GPU cores and the MCP subroutines were constructed 
using serial programming. The subroutines were integrated into library functions, whose I/O 
parameters and naming were decided based on the OpenCV platform. The subroutines 
automatically detected image properties and determined the data type based on pixel depth: 
unsigned char (8 bit), unsigned short (16 bit), signed short (16 bit), float (32 bit) and double 
(64 bit). The template variable is applied to the subroutines to share the algorithm codes with 
an arbitrary data type. Many functions in the machine vision library normally perform 
mathematical operations on the entire image and provide ROI and masking operations for a 
sub-image and on the active pixels of the mask. Further, the subroutines for RA and CT were 
designed to support the ROI and masking operations.  

 

Fig. 3. Parallel architecture using reduction to find min-max for range algorithm and contrast. 
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Sample images in the experiments were synthesized by blurring, arranging, and tiling the Lena 
images [29]. Simulated AF is conducted to verify the DFI by blurring the Lena images using 
an average smoothing filter [30] with a linear size enlargement, as shown in Fig. 4. For AF, 
defocused images are blurred, but focused images are distinct; thus, the blur intensity is related 
to the virtual working distance (VWD) between a virtual camera and an object. The VWD of 
the original Lena image can be focused on, and that of the other images is defocused. 
 

Fig. 4. Original Lena and smoothed images (filter size=50) for simulated autofocus. 
 
The size of the sample images ranged from 0.25 to 45 mega pixels according to the resolution 
of the industrial cameras. The pixel depth of the sample images was varied from 8 bit to 64 bit 
based on the data types. In the experiment, the gray level of each image was increased at an 
offset of 0 – 100 × bytes. The processing times for the RA and CT were measured in 100 
repetitions at each offset; the tests were performed on the ROI and masking operations. The 
target and active regions of the synthesized images were defined in the bottom-right tile of the 
Lena image. Thus, six subroutines were tested using 56 sample images for five data types, and 
the processing time was measured after 10,000 repetitions using each sample image. Further, 
the subroutines were tested for normal, ROI, and masking operations. These benchmark tests 
were conducted on a hexa-core PC (AMD Ryzen 3950X , RTX 2070, 64GB, Ubuntu 20.04), 
an embedded device (Jetson AGX Xavier, 32 GB, Ubuntu 18.04) and a stand-alone machine 
vision (Crevis IPC Vision Block, i7-6600U, 4GB, Ubuntu 22.04). OpenCL was supported for 
the hexa-core PC and the stand-alone machine vision, but was incompatible with the 
embedded device. CUDA was supported for the hexa-core PC and the embedded device. 

Fig. 5. Variation of range algorithm and contrast in simulated autofocus. 
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5. Results and Discussions 
The subroutines for AF were verified using the simulated AF. The normalized RA was 0 when 
the VWD was far from the focus. Further, the RA reached the maximum value at the virtual 
focal position; the CT showed the offsets when defocused, but it exactly indicated the 
maximum at the virtual focal position. Therefore, the subroutines can be used for measuring 
the DFI applicable to the AF. The variation in the simulated AF is shown in Fig. 5. The 
benchmark results for the RA resemble those of CT, and the tendency is similar. The following 
results are discussed for the sake of the RA. 
 

  
   (a)           (b) 

 
(c) 

Fig. 6. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device,  
and (c) a stand-alone machine vision in the 8-bit normal operation. 

 

5.1 Results for normal operations 
Fig. 6 shows the variations in processing speed using the hexa-core PC, embedded device, and 
the stand-alone machine vision in the case of the 8-bit images under normal operation. The 
horizontal axis is the image size in mega-pixels: the vertical axis is the frame rate per second. 
Both axes are log-scaled. The processing speed decreased based on the image size and the rate 
of decrease was approximately linear. The processing time of the hexa-core was 200 – 150,000 
Hz. Therefore, the real-time processing was performed using subroutines. Fig. 7 shows 
acceleration performances using the hexa-core PC, embedded device, and stand-alone 
machine vision according to the pixel depth. The pixel depth was expressed with the number 
of data bits and data types. 
The reference of acceleration was single-core processing using C++. The I-shaped vertical 
lines on each bar indicate the minimum and maximum accelerations. For the hexa-core PC, 
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OpenMP was superior to the other platforms, followed by TBB. The processing of the MCP 
was faster than that of the GPU, and the acceleration increased significantly with an increase in 
image size. The maximum acceleration was 32.6× in an 8-bit pixel depth, but the average 
maximum had a 16-bit pixel depth. Further, the MCP was overwhelmed in the experiments 
with the embedded device. The average maximum occurred using OpenMP and TBB at 32-bit 
and 64-bit pixel depth, respectively. The maximum acceleration was 7.7× when using TBB at 
a 32-bit pixel depth. The MCP processing also showed a better acceleration in the case of the 
stand-alone machine vision. The parallel processing using the MCP was faster than those 
using other types of processing in terms of normal operations. 
 

    
   (a)           (b) 

 
        (c) 

Fig. 7. Acceleration of normal operation using (a) a hexa-core PC, (b) an embedded device,  
and (c) a stand-alone machine vision according to pixel depth. 
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Fig. 8 shows the variation in processing speed using the hexa-core PC, embedded device, and 
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60,000 Hz, respectively; thus, real-time processing is possible. Fig. 9 shows the acceleration 
performances using the hexa-core PC, embedded device, and stand-alone machine vision 
based on the pixel depth. 
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   (a)           (b) 

 
   (c) 

Fig. 8. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device, 
 and (c) a stand-alone machine vision in the 16-bit ROI operation. 
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however, the deviation of the acceleration is lower than that of normal operation. The 
maximum acceleration using the hexa-core was 9.3× for a 64-bit pixel depth, but the average 
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exhibited higher performance than that of the others. The average maximum occurred in the 
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also indicates that parallel architecture is effective for large-scale data processing. 
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   (a)           (b) 

 
  (c) 

Fig. 9. Acceleration of ROI operation using (a) a hexa-core PC, (b) an embedded device,  
and (c) a stand-alone machine vision according to pixel depth. 
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   (a)           (b) 

 
     (c) 

Fig. 10. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device,  
and (c) a stand-alone machine vision in the 64-bit masking operation. 

 

5.4 Discussions 
The performance of the hexa-core PC was better than that of the embedded PC because of the 
hardware specifications. The performance of the MCP was superior to those of the others in 
the hexa-core and embedded PC. The GPU acceleration was ineffective because of the chronic 
bottle neck in the image data transfer. The AF sequentially generates images and transfers the 
data of image pixels to a parallel device. Thus, the MCP is advantageous for these frequent 
data transfers, but the GPU is less favorable to compute the DFI. Therefore, an MCP is 
desirable for the computation of RA and CT; the acceleration is improved in larger images and 
higher data bits, and therefore, the MCP is more efficient for larger volumes of data. As shown 
in the ROI and masking operations, the MCP was effective for 32-bit and 64-bit images. The 
data quantities of these operations were much less than that of the normal operation. The initial 
time is necessary for starting the MCP. Thus, the MCP was suitable for a large-size and 
high-depth image. The embedded device and stand-alone machine vision had octa-core and 
dual-core processors targeting mobile devices. The performance of these processors is much 
lower than that of the hexa-core PC. Nonetheless, the MCP was effective in most cases. Thus, 
it is a worthwhile attempt to apply the MCP for the DFI acceleration. 
The performance is competitive with the reference of previous studies. Although the DFIs 
tested in previous studies were different from those in this study, the processing speed can be 
used as a reference value. A hardware accelerator using a Sparatan-3 FPGA processor 
accomplished 140 Hz for a 640 × 480 image [8]. Comparing performances of a recent 
UltraScale+ FPGA, the transceiver speed of the recent FPGA was increased to 93.2 times. 
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Thus, the maximum processing speed achieved using a recent FPGA is estimated at 13,054 Hz. 
The processing speed of OpenMP for the same size ranged from 22,000 to 148,000 Hz, as 
shown in Fig. 6. A software accelerator using Jetson TX1 achieved 120–250 Hz for a 1.2 MP 
image, according to the DFIs [9]. Considering the performances of recent Jetson AGX Xavier, 
the processing speed is estimated at 3,840–8,000 Hz without considering the complexity of the 
DFIs in the software accelerator. The processing speed in this study was 18,916 Hz, as shown 
in Fig. 6(b). Recording speeds of recent smart phones are 60 – 120 Hz for 4K full HD video, 
and acquisition speeds of machine vision cameras are usually 120 – 220 Hz. The result in Fig. 
6(b), using the ARM processor, is estimated at 2,584 Hz for the 4K full HD image, thus the 
proposed architecture is usable with mobile and industrial machine vision devices. 
The C++ functions of RA and CT were implemented in the SDK; therefore, these DFIs are 
applicable to industrial applications and mobile devices. Parallel reduction is a common 
process in various image operations and DFIs. Therefore, the kernels can be reused to develop 
algorithms. In contrast to minimax in the RA and CT, the DFIs generally comprise arithmetic 
operations and the sum operand. Thus, other DFIs can be parallelized by modifying other 
arithmetic operators. 
In addition, their performances of related studies using 8-bit, fixed-size and their own images 
were shown. Our study experimented with various processors, variable bit-depth, commercial 
sizes, library functions and Lena image for general conditions. 
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       (c) 

 
Fig. 11. Acceleration of the masking operation using (a) a hexa-core PC, (b) an embedded device,  

and (c) a stand-alone machine vision according to pixel depth. 
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6. Conclusions 
Parallel architectures of RA and CT were proposed to accelerate AF and were constructed 
using open sources. These architectures were based on searching for the minimum and 
maximum gray levels in an image; they comprise preliminary and reduction steps. The 
proposed architectures can be designed using conventional parallel reduction. The kernel was 
constructed using the GPU and an MCP considering cross-platform open-source softwares. 
The kernel was designed to perform normal, ROI, and masking operations, and the kernel can 
handle arbitrary data types using a template variable. In the experiment, divese types of images 
were tested to measure the processing time using a high-performance desktop, an embedded 
device and a stand-alone machine vision. The performance of the MCP was superior to that of 
the GPU as well as conventional processing. The MCP was more effective on a large-size and 
high-depth image. Thus, the MCP is advantageous in processing large image data. Although 
the MCP was ineffective in processing small-image data, the MCP showed a great acceleration 
in most cases. Thus, it is necessary to attempt applying the MCP to accelerate AF. The results 
also imply that the proposed architecture can improve the computational performance of AF in 
industrial machines and mobile devices. Because of restrictive conditions in mobile devices, 
the specifications of a mobile CPU are lower than those of a desktop. AF is an indispensable 
function in many mobile devices, and with ever-increasing camera pixels, the MCP can be 
viable alternative for DFI acceleration using the restrictive processing resources in mobile 
devices. In addition, we are currently testing parallel architectures of other DFIs proposed in 
previous research and will present the results soon. 
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