
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, Feb. 2023 542
Copyright ⓒ 2023 KSII

A preliminary version of this paper was presented at APIC-IST 2022, and was selected as an outstanding paper.

http://doi.org/10.3837/tiis.2023.02.014 ISSN : 1976-7277

Parallel Implementations of Digital Focus
Indices Based on Minimax Search Using

Multi-Core Processors

HyungTae Kim1*, Duk-Yeon Lee, Dongwoon Choi, Jaehyeon Kang and Dong-Wook Lee2
1 Digital Transformation R&D Department, Korea Institute of Industrial Technology

Ansan, Gyeonggi, 15588, Korea
[e-mail: htkim@kitech.re.kr]

2 Applied Robot R&D Department, Korea Institute of Industrial Technology
Ansan, Gyeonggi, 15588, Korea

 [e-mail: kitech.re.kr]
*Corresponding author: HyungTae Kim

Received August 3, 2022; revised September 13, 2022; revised November 4, 2022; accepted December 4, 2022;

published February 28, 2023

Abstract

A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and
smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however,
its processing time can be reduced using a general processing unit (GPU) and a multi-core
processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA)
are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based
on a histogram; however, the parallel computation of the histogram is conventionally
inefficient because of the bank conflict in shared memory. The parallel architectures of RA
and CT are constructed using parallel reduction for MSA, which is performed through parallel
relative rating of the image pixel pairs and halved the rating in every step. The array size is
then decreased to one, and the minimax is determined at the final reduction. Kernels for the
architectures are constructed using open source software to make it relatively platform
independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna
images of various sizes based on the resolutions of industrial cameras. The performance of the
kernels for the DFIs was investigated in terms of processing speed and computational
acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a
higher performance.

Keywords: Digital Focus Index, Computer Vision Systems, Embedded Systems, Mobile
Computing, Parallel Processing,

mailto:t.m.chen@swansea.ac.uk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 543

1. Introduction

Multiple image sensors are mounted on various mobile devices and automatic focus (AF)
has become an essential function for maximizing camera usability. The AF determines the
focal position from the variation in the digital focus index (DFI) during actuating camera
optics. DFI originated from the telescope in astronomy [1] and the microscope in
bioengineering [2]; the DFI is derived from optical transfer functions and used to evaluate
high-frequency elements in an image [3]. The variation in the DFI during AF forms a
continuous and smooth curve with a single local maximum. Thus, the AF determines the focal
position at the maxima of the DFI curve while actuating the camera optics [4]. The application
of DFI is not limited to AF, and it can also be applied to various areas in machine vision, such
as image fusion, feature extraction and stitching [5][6].
Further, AF is time-consuming because of the massive number of computational operations on
the DFI. Hundreds of mega-pixel images are acquired and the DFI is sequentially computed
during AF. Conventional DFI is equated as the sum of many iterative mathematical operations
for all pixels [7]. Commercial devices reduce the computational requirement of the AF by
limiting the focal area to a region-of-interest (ROI), rather than by accelerating the DFI
equations. However, only a few studies on the computational acceleration of DFI have been
conducted. Jin devised a hardware accelerator linking a camera with a framegrabber. The
hardware accelerator was constructed using a field-programmable gate-array (FPGA) which
lowered the computational load on the PC [8] but the hardware cost was relatively high
because of various connection interfaces. Thus, the hardware approach is inconvenient for
supporting the diverse formulations of DFIs. The software approach uses a general processing
unit (GPU) platform to parallelize the DFI computation, and computed unified device
architecture (CUDA) is applied to accelerate the Tenenbaum gradient [9]. The GPU platform
is available on a PC or an embedded device. Another parallel device is the multi-core
processor (MCP), which has stronger but fewer cores than a GPU. All these parallel devices
are effective for lowering the computational cost of image processing, and therefore, they have
been introduced in machine vision, such as in stereo vision [10], image compression [11], and
video analysis [12]. However, the parallel architecture for DFI is rarely discussed even though
its processing cost is high [9][13].
Range algorithm (RA) and image contrast (CT) are conventional DFIs. RA and CT in the
current microcopy are based on serial programming. However, the processing time becomes
crucial for automatic focus as a resolution of a commercial camera reaches dozens of mega
bytes. Thus, parallel architectures of RA and CT were proposed in this paper for reducing the
processing time of AF. A parallel architecture was designed to accelerate the minimax search
in RA and CT, and parallel kernels were constructed for a GPU and MCP using cross-platform
open-source softwares. The performance of the kernels was verified using various image sizes
of industrial cameras. The rest of this paper is organized as follows: Section 2 reviews RA and
CT, Section 3 describes the parallel architecture and Section 4 presents the acceleration
performance of the experiments. Conclusions are presented in Section 5.

2. Background
DFIs are usually derived from the gradient between image pixels because pixel changes occur
in high frequency content and object edges [3]. The general focus function is defined as the

544 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

following equation.
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = ∬𝐸𝐸 ��𝜕𝜕

𝑛𝑛𝐼𝐼(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥𝑛𝑛

� − 𝜃𝜃�
𝑚𝑚
𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 (1)

where F, I, θ and E represent the DFI, gray level in a digital image at (x,y), threshold, and
rectified linear function, respectively. The focus position zf is determined at the maximum of
the DFI curve after moving the working distance between the camera and the object z. Images
are acquired, and the DFIs are calculated at every small increment Δz.

𝑧𝑧𝑓𝑓 = max
𝑧𝑧

𝐹𝐹(𝐼𝐼𝑧𝑧) (2)

In addition to the gradient methods, DFIs are obtained using statistical, intuitive and histogram
approaches. In this study, the RA and CT are obtained from the minimum and maximum gray
levels in the histogram. RA in the previous study is applied to fluorescence microscopy [14]
and 3D reconstruction [15], and it is evaluated from the difference between the minimum and
maximum gray levels [16].

𝐹𝐹𝑅𝑅𝑅𝑅 = max(𝑘𝑘|𝐻𝐻𝑘𝑘 > 0) − min(𝑘𝑘|𝐻𝐻𝑘𝑘 > 0) (3)

where, k and H represent the gray level and histogram of I, respectively. A defocused image
contains a single gray shade, whereas an in-focus image contains diverse gray levels.
Therefore RA increases when an image plane approaches a focal position.
The CT originated from the Michelson contrast, which evaluates the gray-level diversity in a
focused image [17][18]. CT is based on periodic optical responses derived from the Michelson
formula, and it is measured from the minimum and maximum luminance as [19].

𝐹𝐹𝐶𝐶𝐶𝐶 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

 (4)

where L represents luminance. The concepts of these methods were utilized to maximize the
contrast of target images in bio-medical imaging. The contrast ratio of the human skin tissue is
measured from the gray levels of the vein and skin areas [20]. The cell images of the dark field,
bright field, and phase contrast are obtained using a concept similar to equation (4) [21][22].
The minimum and maximum luminance values in an image are equal to the minimum and
maximum gray levels in the histogram obtained using equation (3). Thus, RA and CT
originated from different theories but can share the processing values of a histogram by
finding the minimum and maximum gray levels. The processing costs of RA and CT are lower
than those of other DFIs; therefore RA and CT are used to verify the focusing performance of
the microscope. Previous studies focused on the verification of the focusing theory and
accuracy and the processing cost was not considered.

3. Parallel Implementation
A GPU and an MCP are available for parallel processing; DFIs, however, are conventionally
developed using serial processing conditions. As the camera resolution increases, serial
processing exposes the limit of processing time. Thus, parallel processing using a GPU and an
MPC is one of the solutions to lower the processing cost of the DFI. The sequence of parallel
processing for the DFI is shown in Fig. 1. A single-core assesses data and computes a focus

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 545

function on each pixel in the serial processing case. In case of the parallel processing, the
image data is partitioned to subsets and the serial processing is allocated to each of the
processors. The DFI is then obtained by gathering the results of the subsets. The parallel
processing of the DFI involves focus function and reduction. The focus function evaluates the
degree of focus in each pixel, whereas reduction gathers and summarizes the evaluated results
of the full set of pixels.

Fig. 1. Processing sequences of DFI in serial and parallel processing.

3.1 Parallel reduction
RA and CT commonly search for the minimum and maximum gray levels in an image. A
parallel search for minimax can accelerate the computation of RA and CT, and a parallel
search for minimax can be implemented using parallel reduction. Parallel reduction is a
fundamental architecture for obtaining the sum and basic arithmetic from large-scale data [23].
Further, image I(x,y) is a large dataset, and the image can be linearly mapped into a 1D array,
A(p). The array size amounts to millions but because the processing cores of the GPU and
MCP are limited, the array should be partitioned according to the number of parallel cores N.
Ai, the subsets of A, can be organized from various combinations based on the reduction
structures; the following conditions must be satisfied:

⋃ 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑛𝑛
𝑖𝑖=1 𝐴𝐴𝑖𝑖 ≠ ∅ 𝐴𝐴𝑖𝑖⋂𝐴𝐴𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗) (5)

Parallel reduction obtains a scalar result from the set, array size and arbitrary arithmetic
operator, ⨀ [24].

𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴,𝑁𝑁,⨀) (6)

The parallel reduction in Equation (6) can be further formulated by associating the subsets as
[25].

𝑟𝑟 = 𝐴𝐴1⨀⋯⨀𝐴𝐴𝑁𝑁 = ∐ ⨀𝑁𝑁
𝑖𝑖=1 𝐴𝐴𝑖𝑖 (7)

In the minimax search problem, the binary operator, ⨀, is substituted with comparison
operators, such as < and >. The RA and CT values are calculated from rmin and rmax after
reduction.

<serial processing>

Digital image

<parallel processing>

𝐴𝐴1

Digital image

𝐴𝐴𝑁𝑁

r (DFI) r (DFI)

processor1 ⋮

processor1

processorN

546 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

3.2 Parallel architecture
The parallel architecture for RA and CT was constructed to search for both the minimum and
maximum gray level in an image, as shown in Fig. 2. The parallel architecture comprises
preliminary and reduction steps. The preliminary step involves performing minimax search in
subsets; the reduction step determines the minimum and maximum gray level of an image
from the subsets. They are partitioned by allocating data addresses linearly to the parallel cores
when the pixel data in an image were loaded onto parallel memory. Normally, all pixel data in
an image are converted into decimal data. When a mask image is additionally applied to limit
the processing area of an image, the image data on the active pixels of the mask are converted.
The open sources for machine vision provide multiple data formats, and therefore, the parallel
architecture is implemented using a template variable for a variable data format such as
unsigned char, short, float, and double.

Fig. 2. Processing flow in the parallel architecture of range algorithm and contrast.

After determining the minima and maxima in the subsets, the conventional parallel reduction
was applied to search for the extreme values of an image [26]. The parallel reduction
iteratively performs specific mathematical operations on pairs of elements in the array and
transfers the result to the front element. Therefore, the results of the subsets are substituted into
a parallel reduction to determine the minima and maxima from pairs of subsets. The
eliminated elements of pairs after the decision are discarded, and the surviving elements are
transferred to the front elements. The widths of the surviving elements are halved in every
iteration. The iteration was terminated when the width was 1 and the result was placed at the
head element of the array. Fig. 3 shows the concept of parallel reduction in a parallel
architecture. The band of threads is much smaller than the number of pixels, thus the image is
sliced into subsets by the band width and then the parallel reduction is iteratively performed on
the subsets. The parallel reduction is applied to the local minima and maxima of the subsets to

Start

Partitioning image

Find min-max in a subset

Reduction of subsets for max.

Reduction of subsets for min.

End

Pixel data conversion

Masking
mode?

Pixel data conversion only on
active mask pixels (& operator)

yes no

Preliminary
step

Reduction
step

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 547

find the global minimum and maximum of the image. The RA and CT were then calculated
using the global minimum and maximum values.

4. Experiments
Previous studies implemented algorithms on one parallel platform such as CUDA or OpenMP
[27][28]. In this study six parallel platforms were constructed using C++, OpenCV, CUDA,
OpenCL, OpenMP, and TBB for RA and CT. The C++ subroutine is based on serial
processing using a single CPU task. Further, the OpenCV subroutine is implemented using the
cv::minmaxLoc function and used as a reference for verification. CUDA and OpenCL were
applied to GPU subroutines, and OpenMP and TBB were employed for the MCP subroutines.
The parallel architecture in Fig. 3 was adopted to the GPU subroutines. The number of MCP
cores was much smaller than that of the GPU cores and the MCP subroutines were constructed
using serial programming. The subroutines were integrated into library functions, whose I/O
parameters and naming were decided based on the OpenCV platform. The subroutines
automatically detected image properties and determined the data type based on pixel depth:
unsigned char (8 bit), unsigned short (16 bit), signed short (16 bit), float (32 bit) and double
(64 bit). The template variable is applied to the subroutines to share the algorithm codes with
an arbitrary data type. Many functions in the machine vision library normally perform
mathematical operations on the entire image and provide ROI and masking operations for a
sub-image and on the active pixels of the mask. Further, the subroutines for RA and CT were
designed to support the ROI and masking operations.

Fig. 3. Parallel architecture using reduction to find min-max for range algorithm and contrast.

5. Moving to
the next subset

> > > > > > > >

Preliminary step

> > > >

> >

Max

 Digital image

 1. Allocation of a subset to
parallel threads

2. Parallel reduction
for local maximum

< < < < < < < <

< < < <

< <

Min

3. Parallel reduction
for local minimum

Imax , Imin
⇒ RA, CT

4. Storage of local
minima & maxima

> > > > > > > >

> > > >

> >

Max

6. Allocation of local maxima
 to parallel threads

 7. Parallel reduction for
global maximum

< < < < < < < <

< < < <

< <

Min

9. Parallel reduction
for global minimum

8. Allocation of local minima
 to parallel threads

…

6. Reduction was performed on all pixels.

548 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

Sample images in the experiments were synthesized by blurring, arranging, and tiling the Lena
images [29]. Simulated AF is conducted to verify the DFI by blurring the Lena images using
an average smoothing filter [30] with a linear size enlargement, as shown in Fig. 4. For AF,
defocused images are blurred, but focused images are distinct; thus, the blur intensity is related
to the virtual working distance (VWD) between a virtual camera and an object. The VWD of
the original Lena image can be focused on, and that of the other images is defocused.

Fig. 4. Original Lena and smoothed images (filter size=50) for simulated autofocus.

The size of the sample images ranged from 0.25 to 45 mega pixels according to the resolution
of the industrial cameras. The pixel depth of the sample images was varied from 8 bit to 64 bit
based on the data types. In the experiment, the gray level of each image was increased at an
offset of 0 – 100 × bytes. The processing times for the RA and CT were measured in 100
repetitions at each offset; the tests were performed on the ROI and masking operations. The
target and active regions of the synthesized images were defined in the bottom-right tile of the
Lena image. Thus, six subroutines were tested using 56 sample images for five data types, and
the processing time was measured after 10,000 repetitions using each sample image. Further,
the subroutines were tested for normal, ROI, and masking operations. These benchmark tests
were conducted on a hexa-core PC (AMD Ryzen 3950X , RTX 2070, 64GB, Ubuntu 20.04),
an embedded device (Jetson AGX Xavier, 32 GB, Ubuntu 18.04) and a stand-alone machine
vision (Crevis IPC Vision Block, i7-6600U, 4GB, Ubuntu 22.04). OpenCL was supported for
the hexa-core PC and the stand-alone machine vision, but was incompatible with the
embedded device. CUDA was supported for the hexa-core PC and the embedded device.

Fig. 5. Variation of range algorithm and contrast in simulated autofocus.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -30 -10 10 30 50

D
FI

virtual focal distance

RA (normal)

CT

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 549

5. Results and Discussions
The subroutines for AF were verified using the simulated AF. The normalized RA was 0 when
the VWD was far from the focus. Further, the RA reached the maximum value at the virtual
focal position; the CT showed the offsets when defocused, but it exactly indicated the
maximum at the virtual focal position. Therefore, the subroutines can be used for measuring
the DFI applicable to the AF. The variation in the simulated AF is shown in Fig. 5. The
benchmark results for the RA resemble those of CT, and the tendency is similar. The following
results are discussed for the sake of the RA.

 (a) (b)

(c)

Fig. 6. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device,
and (c) a stand-alone machine vision in the 8-bit normal operation.

5.1 Results for normal operations
Fig. 6 shows the variations in processing speed using the hexa-core PC, embedded device, and
the stand-alone machine vision in the case of the 8-bit images under normal operation. The
horizontal axis is the image size in mega-pixels: the vertical axis is the frame rate per second.
Both axes are log-scaled. The processing speed decreased based on the image size and the rate
of decrease was approximately linear. The processing time of the hexa-core was 200 – 150,000
Hz. Therefore, the real-time processing was performed using subroutines. Fig. 7 shows
acceleration performances using the hexa-core PC, embedded device, and stand-alone
machine vision according to the pixel depth. The pixel depth was expressed with the number
of data bits and data types.
The reference of acceleration was single-core processing using C++. The I-shaped vertical
lines on each bar indicate the minimum and maximum accelerations. For the hexa-core PC,

10

100

1000

10000

100000

1000000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
CUDA
OpenCL
OpenMP
TBB

1

10

100

1000

10000

100000

0.1 1 10 100
H

z

Image size (MPixel)

single
OpenCV
CUDA
OpenMP
TBB

1

10

100

1000

10000

100000

1000000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
OpenCL
OpenMP
TBB

550 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

OpenMP was superior to the other platforms, followed by TBB. The processing of the MCP
was faster than that of the GPU, and the acceleration increased significantly with an increase in
image size. The maximum acceleration was 32.6× in an 8-bit pixel depth, but the average
maximum had a 16-bit pixel depth. Further, the MCP was overwhelmed in the experiments
with the embedded device. The average maximum occurred using OpenMP and TBB at 32-bit
and 64-bit pixel depth, respectively. The maximum acceleration was 7.7× when using TBB at
a 32-bit pixel depth. The MCP processing also showed a better acceleration in the case of the
stand-alone machine vision. The parallel processing using the MCP was faster than those
using other types of processing in terms of normal operations.

 (a) (b)

 (c)

Fig. 7. Acceleration of normal operation using (a) a hexa-core PC, (b) an embedded device,
and (c) a stand-alone machine vision according to pixel depth.

5.2 Results for ROI operations
Fig. 8 shows the variation in processing speed using the hexa-core PC, embedded device, and
stand-alone machine vision in the case of the 16-bit images under the ROI operation. This case
indicates that the processing time was approximately constant based on the image size. The
ROI was performed on a specific area of the sample images; however, the processing load
remained unchanged. The processing times of the hexa-core PC, embedded device and
stand-alone machine vision were approximately 12,000-130,000, 1,800 – 20,000 and 2,200 –
60,000 Hz, respectively; thus, real-time processing is possible. Fig. 9 shows the acceleration
performances using the hexa-core PC, embedded device, and stand-alone machine vision
based on the pixel depth.

0

5

10

15

20

25

30

35

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

CUDA
OpenCL
OpenMP
TBB

0

1

2

3

4

5

6

7

8

9

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

CUDA
OpenMP
TBB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

OpenCL
OpenMP
TBB

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 551

 (a) (b)

 (c)

Fig. 8. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device,
 and (c) a stand-alone machine vision in the 16-bit ROI operation.

OpenMP was superior to the other platforms using the hexa-core; TBB was second, and the
GPU was slower in this case. However, the single-core processing showed similar
performances to the MCP in the embedded device, and stand-alone machine vision; this
implies that initial time is required to activate the MCP. The numbers of cores were fewer than
that of the hexa-core, and the data size of the ROI operation was much smaller than that of the
normal operation. The acceleration was relatively constant though the image size increases;
however, the deviation of the acceleration is lower than that of normal operation. The
maximum acceleration using the hexa-core was 9.3× for a 64-bit pixel depth, but the average
maximum was 7.8× in the hexa-core PC. The maximum accelerations using the embedded
device and stand-alone machine vision were 5.6× and 3.9× respectively. The MCP generally
exhibited higher performance than that of the others. The average maximum occurred in the
cases of OpenMP and TBB for the 32-bit and 64-bit pixel depths, respectively. Further, this
also indicates that parallel architecture is effective for large-scale data processing.

10

100

1000

10000

100000

1000000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
CUDA
OpenCL
OpenMP
TBB

1

10

100

1000

10000

100000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
CUDA
OpenMP
TBB

1

10

100

1000

10000

100000

0.1 1 10 100

H
z

Image size (MPixel)

OpenCV
OpenCL
OpenMP
TBB
single

552 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

 (a) (b)

 (c)

Fig. 9. Acceleration of ROI operation using (a) a hexa-core PC, (b) an embedded device,
and (c) a stand-alone machine vision according to pixel depth.

5.3 Results for masking operations
Fig. 10 shows the variation in the processing speed using the hexa-core PC, embedded device,
and stand-alone machine vision for the 64-bit images under the masking operation. The
processing time decreased linearly with image size. In this case the results were classified into
two groups, vis. MCP, and the others. OpenMP and TBB are available for real-time processing
because other platforms exhibit low performances for large image sizes. Fig. 11 shows the
acceleration performances obtained using the hexa-core and embedded PCs according to the
pixel depth.
OpenMP and TBB exhibited similar accelerations with large offsets. MCP was superior to the
other platforms in the results of the 32-bit and 64-bit images. Single-core processing was
better when using 8-bit and 16-bit images. This can be caused by the initial time required to
activate the MCP. The maximum acceleration was 16.9× in the 64-bit pixel depth, and the
average maximum was 13.2× in the hexa-core PC. The average maximum in the hexa-core PC
and stand-alone machine vision occurred with OpenMP. TBB was superior in case of the
embedded device. The average acceleration was 8.5× and 4.1× in the embedded device and
stand-alone machine vision, respectively. Thus, parallel architectures for the MCPs were
available in the acceleration for RA and CT in the case of the large data size.

0
1
2
3
4
5
6
7
8
9

10

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
)

OpenCV
CUDA
OpenCL
OpenMP
TBB

0

1

2

3

4

5

6

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
)

OpenCV
CUDA
OpenMP
TBB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

OpenCL
OpenMP
TBB

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 553

 (a) (b)

 (c)

Fig. 10. Variations of the processing speed using (a) a hexa-core PC, (b) an embedded device,
and (c) a stand-alone machine vision in the 64-bit masking operation.

5.4 Discussions
The performance of the hexa-core PC was better than that of the embedded PC because of the
hardware specifications. The performance of the MCP was superior to those of the others in
the hexa-core and embedded PC. The GPU acceleration was ineffective because of the chronic
bottle neck in the image data transfer. The AF sequentially generates images and transfers the
data of image pixels to a parallel device. Thus, the MCP is advantageous for these frequent
data transfers, but the GPU is less favorable to compute the DFI. Therefore, an MCP is
desirable for the computation of RA and CT; the acceleration is improved in larger images and
higher data bits, and therefore, the MCP is more efficient for larger volumes of data. As shown
in the ROI and masking operations, the MCP was effective for 32-bit and 64-bit images. The
data quantities of these operations were much less than that of the normal operation. The initial
time is necessary for starting the MCP. Thus, the MCP was suitable for a large-size and
high-depth image. The embedded device and stand-alone machine vision had octa-core and
dual-core processors targeting mobile devices. The performance of these processors is much
lower than that of the hexa-core PC. Nonetheless, the MCP was effective in most cases. Thus,
it is a worthwhile attempt to apply the MCP for the DFI acceleration.
The performance is competitive with the reference of previous studies. Although the DFIs
tested in previous studies were different from those in this study, the processing speed can be
used as a reference value. A hardware accelerator using a Sparatan-3 FPGA processor
accomplished 140 Hz for a 640 × 480 image [8]. Comparing performances of a recent
UltraScale+ FPGA, the transceiver speed of the recent FPGA was increased to 93.2 times.

10

100

1000

10000

100000

1000000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
CUDA
OpenCL
OpenMP
TBB

1

10

100

1000

10000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
CUDA
OpenMP
TBB

1

10

100

1000

10000

0.1 1 10 100

H
z

Image size (MPixel)

single
OpenCV
OpenCL
OpenMP
TBB

554 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

Thus, the maximum processing speed achieved using a recent FPGA is estimated at 13,054 Hz.
The processing speed of OpenMP for the same size ranged from 22,000 to 148,000 Hz, as
shown in Fig. 6. A software accelerator using Jetson TX1 achieved 120–250 Hz for a 1.2 MP
image, according to the DFIs [9]. Considering the performances of recent Jetson AGX Xavier,
the processing speed is estimated at 3,840–8,000 Hz without considering the complexity of the
DFIs in the software accelerator. The processing speed in this study was 18,916 Hz, as shown
in Fig. 6(b). Recording speeds of recent smart phones are 60 – 120 Hz for 4K full HD video,
and acquisition speeds of machine vision cameras are usually 120 – 220 Hz. The result in Fig.
6(b), using the ARM processor, is estimated at 2,584 Hz for the 4K full HD image, thus the
proposed architecture is usable with mobile and industrial machine vision devices.
The C++ functions of RA and CT were implemented in the SDK; therefore, these DFIs are
applicable to industrial applications and mobile devices. Parallel reduction is a common
process in various image operations and DFIs. Therefore, the kernels can be reused to develop
algorithms. In contrast to minimax in the RA and CT, the DFIs generally comprise arithmetic
operations and the sum operand. Thus, other DFIs can be parallelized by modifying other
arithmetic operators.
In addition, their performances of related studies using 8-bit, fixed-size and their own images
were shown. Our study experimented with various processors, variable bit-depth, commercial
sizes, library functions and Lena image for general conditions.

 (a) (b)

 (c)

Fig. 11. Acceleration of the masking operation using (a) a hexa-core PC, (b) an embedded device,

and (c) a stand-alone machine vision according to pixel depth.

0

2

4

6

8

10

12

14

16

18

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

CUDA
OpenCL
OpenMP
TBB

0

2

4

6

8

10

12

14

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
) OpenCV

CUDA
OpenMP
TBB

0

1

2

3

4

5

6

8/unsigned 16/unsigned 16/signed 32/float 64/double

ac
ce

le
ra

tio
n

(x
)

OpenCV
OpenCL
OpenMP
TBB

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 555

6. Conclusions
Parallel architectures of RA and CT were proposed to accelerate AF and were constructed
using open sources. These architectures were based on searching for the minimum and
maximum gray levels in an image; they comprise preliminary and reduction steps. The
proposed architectures can be designed using conventional parallel reduction. The kernel was
constructed using the GPU and an MCP considering cross-platform open-source softwares.
The kernel was designed to perform normal, ROI, and masking operations, and the kernel can
handle arbitrary data types using a template variable. In the experiment, divese types of images
were tested to measure the processing time using a high-performance desktop, an embedded
device and a stand-alone machine vision. The performance of the MCP was superior to that of
the GPU as well as conventional processing. The MCP was more effective on a large-size and
high-depth image. Thus, the MCP is advantageous in processing large image data. Although
the MCP was ineffective in processing small-image data, the MCP showed a great acceleration
in most cases. Thus, it is necessary to attempt applying the MCP to accelerate AF. The results
also imply that the proposed architecture can improve the computational performance of AF in
industrial machines and mobile devices. Because of restrictive conditions in mobile devices,
the specifications of a mobile CPU are lower than those of a desktop. AF is an indispensable
function in many mobile devices, and with ever-increasing camera pixels, the MCP can be
viable alternative for DFI acceleration using the restrictive processing resources in mobile
devices. In addition, we are currently testing parallel architectures of other DFIs proposed in
previous research and will present the results soon.

Acknowledgement
We would like to acknowledge the financial support from the Year 2022 Culture Technology
R&D Program of Ministry of Culture, Sports and Tourism and Korea Creative Content
Agency (Project Name: Development of the system for digital data acquisition of modern and
contemporary fine arts and supporting science-based art credibility analysis, Project
Number:R2020060004).

References
[1] R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope

images through image sharpening,” J. Opt. Soc. Ame., vol. 64, pp. 1200-1210, Jan. 1974.
Article (CrossRef Link)

[2] M. L. Mendelsohn, D. E. Bennett, E. Bogart, and B. H. Mayall, “Computer-Oriented Analysis of
Human Chromosomes IV. Deoxyribonucleic Acid-Based Centromeric Index,” J. of Histochem.
and Cyto., vol. 22, no. 7, pp. 554-560, Jul. 1974. Article (CrossRef Link)

[3] F. C. Groen, I. T. Young and G. Ligthart, “A comparison of different focus functions for use in
autofocus algorithms,” Cytometry, vol. 6, no. 2, pp. 81-91, Mar. 1985. Article (CrossRef Link)

[4] A. R. Cabazos-Mar´ın and J. A´ lvarez-Borrego, “Automatic focus and fusion image algorithm
using nonlinear correlation: Image quality evaluation,” Optik, vol. 164, pp. 224-242, Jul. 2018.
Article (CrossRef Link)

[5] Y. Yang, W. Zheng and S. Haung, “A Novel Automatic Block-based Multi-focus Image Fusion
via Genetic Algorithm,” KSII Trans. Inter. Info. Sys., vol. 7, no. 7, pp.1671-1689, Jul. 2013.
Article (CrossRef Link)

[6] R. Jia, A. Nahli, D. Li and J. Zhang, “A Multi-Freature Extraction-Baed Algorithm for Stitching
Tampered/Untampered Image Classification,” App. Sci., vol. 12, no. 5, pp. 2337, Feb. 2022.
Article (CrossRef Link)

https://doi.org/10.1364/JOSA.64.001200
https://doi.org/10.1177/22.7.554
https://doi.org/10.1002/cyto.990060202
https://doi.org/10.1016/j.ijleo.2018.02.101
https://doi.org/10.3837/tiis.2013.07.009
https://doi.org/10.3390/app12052337

556 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

[7] H. Lee, C. S. Jung and K. W. Kim, “Feature Preserving Autofocus Algorithm for Phase Error
Correction of SAR Images,” Sensors, vol. 21, no. 7, pp. 2370, Mar. 2021. Article (CrossRef Link)

[8] S. Jin, J. Cho, K. H. Kwon and J. W. Jeon, “A dedicated hardware architecture for real-time
auto-focusing using an FPGA,” Mach. Vis. App., vol. 21, pp. 727–734, Feb. 2010.
Article (CrossRef Link)

[9] J. M. Castillo-Secilla, M. Saval-Calvo, L. Medina-Vald`es, S. Cuenca-Asensi, A. Mart´ınez-A´
lvarez, C. Sa´nchez, and G. Cristo´bal, “Autofocus method for automated microscopy using
embedded GPUs,” Biomed. Opt. Exp., vol. 8, pp. 1731-1740, Mar. 2017. Article (CrossRef Link)

[10] C. G. Kim and Y. S. Choi, “Improved Disparity Map Computation on Stereoscopic Streaming
Video with Multi-core Parallel Implementation,” KSII Trans. Inter. Info. Sys., vol. 9, no. 2, pp.728
- 741, Feb. 2015. Article (CrossRef Link)

[11] C. Li, “Parallel Implementation of the Recursive Least Square for Hyperspectral Image
Compression on GPUs,” KSII Trans. Inter. Info. Sys., vol. 11, no. 7, pp.3543 - 3557, Jul. 2017.
Article (CrossRef Link)

[12] K. Liao, F. Zhao and M. Zhang, “Parallel Implementation Strate for Content Based Video Copy
Detection Using a Multi-core Processor,” KSII Trans. Inter. Info. Sys., vol. 8, no. 10, pp.3520 -
3537, Oct. 2014. Article (CrossRef Link)

[13] H. Kim and D. W. Lee, “Parallel Processing Architecture of Intuitive Digital Image Indices Based
on Open Sources,” in Proc. of IEEE TENSYMP, Jeju, Korea, 2021.

[14] A. Santos, C. Ortiz De Sólorzano, J. J. Vaquero, J. M. Peña, N. Malpica and F. Del Pozo,
“Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Micro., vol. 188, no. 3,
pp. 264-272, Oct. 1997. Article (CrossRef Link)

[15] S. Pertuz, D. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,”
Pat. Recog., vol. 46, pp. 1415-1432, May 2013. Article (CrossRef Link)

[16] L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston Jr, “Comparison of Autofocus
Methods for Automated Microscopy,” Cytometry, vol. 12, no. 3, pp. 195-206, Mar. 1991.
Article (CrossRef Link)

[17] E. Peli, “Contrast in complex images,” J. Opt. Soc. Ame. A, vol. 7, no. 10, pp. 2032-2040, Oct.
1990. Article (CrossRef Link)

[18] G. Vivone, R. Restaino, M. D. Mura, G. Licciardi, and J. Chanussot, “Contrast and Error-Based
Fusion Schemes for Multispectral Image Pansharpening,” IEEE Geo. Remo. Sens. Lett., vol. 11,
no. 5, pp. 930-934, May 2014. Article (CrossRef Link)

[19] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon and R. J. Filkins, “Simple and
robust image-based autofocusing for digital microscopy,” Opt. Exp., vol. 16, no. 12, pp.
8670-8677, Jul. 2008. Article (CrossRef Link)

[20] F. Wang, A. Behrooz, M. Morris, and A. Adibia, “High-contrast subcutaneous vein detection and
localization using multispectral imaging,” J. Biomed. Opt., vol. 18, no. 5, pp. 050504, May 2013.
Article (CrossRef Link)

[21] D. Jung, J. Choi, S. Kim, S. Ryu, W. Lee, J. Lee and C. Joo, “Smartphone-based multi-contrast
microscope using color-multiplexed illumination,” Sci. Rep., vol. 7, pp. 7564, Aug. 2017.
Article (CrossRef Link)

[22] Z. F. Phillips, M. V. D'Ambrosio, L. Tian et al, “Multi-Contrast Imaging and Digital Refocusing
on a Mobile Microscope with a Domed LED Array,” PLoS ONE, vol. 10, no. 5, pp. e0124938,
May 2015. Article (CrossRef Link)

[23] S. Collange1, D. Defour, S. Graillat and R. Iakymchuk, “Numerical Reproducibility for the
Parallel Reduction on Multi- and Many-Core Architectures,” Para. Comp., vol. 49, pp. 83-97, Nov.
2015. Article (CrossRef Link)

[24] B. K. Szymanski, W. Maniatty and B. Sinharoy, “Simultaneous Parallel Reduction on SIMD
Machines,” Par. Proc. Lett., vol. 5, no. 3, pp. 437-449, Sept. 1995. Article (CrossRef Link)

[25] W. He, H. Guo, T. Peterka, S. Di, F. Cappello and H. Shen, “Parallel Partial Reduction for
Large-Scale Data Analysis and Visualization,” in Proc. of IEEE LDAV, Berlin, Germany, pp.
45-55, 2018.

https://doi.org/10.3390/s21072370
https://doi.org/10.1007/s00138-009-0190-2
https://doi.org/10.1364/BOE.8.001731
https://doi.org/10.3837/tiis.2015.02.014
https://doi.org/10.3837/tiis.2017.07.013
https://doi.org/10.3837/tiis.2014.10.014
https://doi.org/10.1046/j.1365-2818.1997.2630819.x
https://doi.org/10.1016/j.patcog.2012.11.011
https://doi.org/10.1002/cyto.990120302
https://doi.org/10.1364/JOSAA.7.002032
https://doi.org/10.1109/LGRS.2013.2281996
https://doi.org/10.1364/OE.16.008670
https://doi.org/10.1117/1.JBO.18.5.050504
https://doi.org/10.1038/s41598-017-07703-w
https://doi.org/10.1371/journal.pone.0124938
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1142/S0129626495000400

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, February 2023 557

[26] M. Harris, “Optimizing cuda - SC07: High Performance Computing With CUDA,” NVIDIA
Developer Technology, 2007.

[27] P. Borovska and M. Lazarova, “Efficiency of Parallel Minimax Algorithm for Game Tree Search,”
in Proc. of Int. Conf. Comp. Sys. Tech., Rousse, Bulgaria, 2007.

[28] K. Rocki and R. Suda, “Parallel Minimax Tree Searching on GPU,” in Proc. of Int. Conf. Para.
Proc. App. Math.: Part I, Wroclaw, Poland, pp. 449–456, 2009.

[29] S. Ahmed, K. K. Ghosh, S. K. Bera, F. Schwenker and R. Sarkar, “Gray Level Image Contrast
Enhancement Using Barnacles Mating Optimizer,” IEEE Acc., vol. 8, pp. 169196-169214, Sept.
2020. Article (CrossRef Link)

[30] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th Ed., New York, NY, USA:
Pearson, 2018.

[31] Z. Jiang, Y. Kong, F. Liu, C. Liu and S. Wang, “Graphics processing unit (GPU) aided
wavefront-based autofocusing in microscopy,” AIP Adv., vol. 8, pp. 105328, Oct. 2018.
Article (CrossRef Link)

[32] J. C. Valdiviezo-N, F. J. Hernandez-Lopez, C. Toxqui-Quitl, “Parallel implementations to
accelerate the autofocus process in microscopy applications,” J. Med. Imag., vol. 7, no. 1, pp.
014001, Jan. 2020. Article (CrossRef Link)

HyungTae Kim is working as a principal research engineer in Digital Transformation
R&D Department in Korea Institute of Industrial Technology. He has authored and
coauthored more than 50 articles in major journals and 160 articles in conference proceedings.
His area of expertise is the machine vision algorithm interlocked with cameras, illumination,
optics, kinematics, sensors and parallel devices. He recently achieved results from
hyper-spectral, fluorescene, polarized and high-speed imaging.

Duk-Yeon Lee received the B.S degree in In- formation & Communication Engineering
from Myong ji University, Young-in, Korea, and MS degrees in Computer Science
Engineering from Hanyang University, Seoul, Korea, in 2004 and 2007 respectively. He is
currently a senior researcher at Korea Institute of Industrial Technology (KITECH), Korea,
since 2009. His research interests include Android Robots, Deep Learning and Image
Processing.

Dongwoon Choi received the B.S., M.S. degrees in Mechanical Engineering from
Hanyang University, Korea, in 2005, 2007, respectively. He is currently a principal
researcher at Korea Institute of Industrial Technology(KITECH), Korea, since 2007. His
research interests include mechanical design, android robot, humanoid robot, AI and
smartfarm system.

https://doi.org/10.1109/ACCESS.2020.3024095
https://doi.org/10.1063/1.5046966
http://doi.org/10.1117/1.JMI.7.1.014001

558 Kim et al.: Parallel Implementations of Digital Focus Indices
 Based on Minimax Search Using Multi-Core Processors

Jaehyeon Kang received the B.S. and Ph.D. degrees in electrical engineering from Korea
University, Seoul, South Korea, in 2011 and 2018, respectively. Since 2019, he has been a
Senior Researcher with the Robotics Research and Development Department, Korea Institute
of Industrial Technology, Ansan, South Korea. His research interests include sensor
calibration, robot localization, environment mapping, and SLAM.

Dong-Wook Lee received the B.S., M.S., and Ph.D. degrees in Control and
Instrumentation Engineering from Chung-Ang University, Korea, in 1996, 1998, 2000,
respectively. He was a research professor at Chung-Ang University, Korea, from 2002 to
2004. He was a post-doctoral researcher at the University of Tennessee, USA, from 2004 to
2005. He is currently a principal researcher at Korea Institute of Industrial
Technology(KITECH), Korea, since 2005. His research interests include android robot,
social Human-Robot Interaction, and image acquisition system.

