• 제목/요약/키워드: robot platform

검색결과 410건 처리시간 0.04초

An OS Platform Independent Architecture of Web-based Teleoperation for mobile robot

  • Ko, Deok-Hyeon;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.346-349
    • /
    • 2004
  • The teleoperation system applies all of the industrial fields due to the development of the network infrastructure. It is one of the indispensable elements for controlling the robot at a remote sight and monitoring the limit or unknown environment. The common teleoperation robot system is what has the visual module to supply the network system and realistic UI to the existed robot system. Therefore, remarked that the fusion between modules and transmission of visual data the remarked the important element to improve the robot application in the various environments. Delay of development time by robot platform and noneffective communication among developers are also problem to approach. In this paper we propose the independent teleoperation system. The main application language is JAVA in this system, which is applied JAVA API like JNI and JMF to construct the effective teleoperation system. The system has the both side communication system between sever and client as a basic structure. The visual data that is attached the robot at a remote sight is captured by JMF API and then is transmitted to the web browser called client by RTR protocol. JNI is used to connect between JAVA and the lower part application (sensor fusion, motion control.) of the robot programmed by various Native languages. The proposed system is the application that can perform the elements, for instance transmission of visual data, the fusion of various native application modules and the effective network communication, with any platform.

  • PDF

가정용 지능형 경비 로봇 시스템 개발 (Development of an Intelligent Security Robot System for Home Surveillance)

  • 박정호;신동관;우춘규;김형철;권용관;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법 (Secure Scheme Between Nodes in Cloud Robotics Platform)

  • 김형주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.595-602
    • /
    • 2021
  • 로봇은 주변 상황을 인지하고 Task를 부여받는 software oriented 형상으로 발전하고 있다. Cloud Robotics Platform은 로봇에 Service Oriented Architecture 형상을 지원하기 위한 방법으로, 상황에 따라 필요한 Task와 Motion Controller를 클라우드 기반으로 제공할 수 있는 방안이다. 휴머노이드 로봇으로 진화할수록 로봇은 로봇 3대 원칙에 따라 보편화된 일상생활 속에서 인간에게 도움을 주기 위해 사용될 것이다. 따라서 특정 개인만을 위한 로봇 이외에도, 상황에 따라 모든 인간에게 도움을 줄 수 있는 공공재로써의 로봇이 보편화될 것이다. 따라서, 생성하는 정보는 사람, 로봇, 로봇에 지능을 부여하는 클라우드 상의 서비스 애플리케이션, 로봇과 클라우드를 이어주는 클라우드 브릿지로 구성될 것으로 분석되는 Cloud Robotics Computing 환경에서 정보보안의 중요성은 인간의 생명 및 안전을 위해 필수불가결한 요소로 자리잡게 될 것이다. 본 논문에서는 지능화된 로봇을 위한 Cloud Robotics Computing 환경에서 사람, 로봇, 클라우드 브릿지, 클라우드 시스템간 통신 시 보안을 제공하여 해킹으로부터 안전하고 개인의 정보가 보호되는 로봇 서비스가 가능할 수 있는 Security Scheme을 제안한다.

밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구 (Improvements to a Modular Agricultural Robot Platform for Field Work)

  • 김동우;홍형길;조용준;윤해룡;오장석;강민수;박희창;서갑호
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

Development of an Embedded Vision Platform for Internet-based Robot Control

  • Kim, Tae-Hee;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.116.4-116
    • /
    • 2002
  • $\textbullet$In case of using overhead camera system, mobile robot moves under static working area. $\textbullet$Mobile robot must use onboard camera system to work under wide working area. $\textbullet$Mobile robot must have wireless LAN to remove restriction of movement. $\textbullet$Onboard camera system must have wireless LAN environment. $\textbullet$We develop embedded vision platform using onboard camera.

  • PDF

벼농사용 무인 제초로봇의 건답환경 주행 성능 (Traveling Performance of a Robot Platform for Unmanned Weeding in a Dry Field)

  • 김국환;김상철;홍영기
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.43-50
    • /
    • 2014
  • This paper introduces a robot platform which can do weeding while traveling between rice seedlings stably against irregular land surface of a paddy field. Also, an autonomous navigation technique that can track on stable state without any damage of the seedlings in the working area is proposed. Detection of the rice seedlings and avoidance knocking down by the robot platform is achieved by the sensor fusion of a laser range finder (LRF) and an inertial measurement unit (IMU). These sensors are also used to control navigating direction of the robot to keep going along the column of rice seedling consistently. Deviation of the robot direction from the rice column that is sensed by the LRF is fed back to a proportional and derivative controller to obtain stable adjustment of navigating direction and get proper returning speed of the robot to the rice column.

밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구 (A Study on Modular Agricultural Robotic Platform for Upland)

  • 조용준;우성용;송수환;홍형길;윤해룡;오장석;김준성;김동우;서갑호;김대희
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

반응표면법을 이용한 고속 주행용 실외 경비로봇의 현가장치 근사 최적화 (Approximate Optimization of Suspension Mechanism for Outdoor Security Robot using Response Surface Methodology)

  • 고두열;정해관;우춘규;김수현
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.135-142
    • /
    • 2010
  • Security robot has gradually developed and deployed in order to protect civilian's lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.

OPRoS: A New Component-Based Robot Software Platform

  • Jang, Choul-Soo;Lee, Seung-Ik;Jung, Seung-Woog;Song, Byoung-Youl;Kim, Rock-Won;Kim, Sung-Hoon;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.646-656
    • /
    • 2010
  • A component is a reusable and replaceable software module accessed through its interface. Component-based development is expected to shorten the development period, reduce maintenance costs, and improve program reusability and the interoperability of components. This paper proposes a new robot software component platform in order to support the entire process of robot software development. It consists of specifications of a component model, component authoring tool, component composer, and component execution engine. To show its feasibility, this paper presents the analysis results of the component's communication overhead, a comparison with other robotic software platforms, and applications in commercial robots.

Kinect를 이용한 교육용 휴머노이드 제어시스템 (An Implementaition of Humanoid Control for Education using Kinect)

  • 이승연;차유성
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.50-53
    • /
    • 2014
  • Although there are some calculations of kinetics, dynamics, torque of each joint, size and weight which are used in implementing of humanoid robot, it is too expensive and need much education to make frame of robot body, actuator, and etc. Moreover, since there is lots of differences of operational principle, we need many kinds of experimental and education. However, the real humanoid robot is difficult to propagate because of its prices and other technical problems. Therefore we need small robot platform and control method which can give a enough education effect as similar as real humanoid robot. In this paper, the Kinect Sensor which made by Microsoft will be used for control method of humanoid platform.