• Title/Summary/Keyword: robot kinematics

Search Result 410, Processing Time 0.026 seconds

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

A study on Development of Footwear Shape Scanner for Off-Line Robot Path Programming

  • Lho, Tae-Jung;Song, Se-Hoon;Ju, Hyun-Woo;Lee, Jung-Wook;Cho, Jae-Kung;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.808-812
    • /
    • 2003
  • We need a lot of manpower and we can cut down a labor cost by applying industrial robots the footwear bonding automation process. In this study, we suggest how to program off-line robot path along a shoe's outsole shape in the footwear bonding process by 5-axis microscribe system like robot arms. This microscribe system development consists 5-axis microscribe mechanics, signal processing circuit, and PC with software. It is the system for making database of a shoe's outsole through the movement of a microscribe with many joints. To do this, first read 5-encoders' pulse values while a robot arm points a shoe's outsole shape from the initial status. Then, calculate a relative shoe's outsole by Denavit-Hatenberg's (D-H) direct Kinematics of known length of links and coordinate values. Next, calculate the encoders' pulse values of the robot arm's rotation and transmitting the angle pulse values to the PC through a circuit. Finally, it is able to display a shoe's outsole at real-time by computing the Denvavit-Hantenberg's (D-H) direct kinematics in the PC. With the coordinate values calculated above, we can draw a bonding gauge-line on the upper. Also, we can make off-line robot path programming compute a shoe's bonding area on the upper. These results will be effectively applied for programming a robot path on off-line and automatically.

  • PDF

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

A Study on Kinematics Analysis and Motion Control of Humanoid Robot Arm with Eight Joints (휴머노이드 로봇 관절 아암의 운동학적 해석 및 모션제어에 관한 연구)

  • Jung, Yang-Geun;Lim, O-Duek;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • This study proposes a new approach to Control and trajectory generation of a 8 DOF human robot arm with computational complexity and singularity problem. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of research, we propose an analytical kinematics algorithm for a 8 DOF bipped dual robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regarding to the end-effector pose. Performance of the proposed algorithm was verified by simulation test with various conditions. It has been verified that the trajectory planning using this algorithm.

Generation of 3-dimensional isocomfort workspace using the robot kinematics (로보트 기구학을 이용한 3차원 등편의 작업영역의 생성)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 1997
  • The purpose of this study is to obtain 3-dimensional isocomfort workspace using the robot kinematics, which is based on perceived discomfort in varying postures for manipulating four types of controls. Fifteen healthy male subjects participated in the experiment where their perceived discomfort in the given postures was measured, in which L32 orthogonal array was adopted. The shoulder flexion and adduction-abduction, elbow flexion, types of controls, and right/left hands were selected as experimental variables. The results showed that the shoulder flexion and adduction-abduction, elbow flexion, and types of controls significantly affected the perceived discomfort at .alpha. =0.01. Depending upon the types of control used, regression equations predicting perceived dis- comfort and three dimensional isocomfort workspace were suggested based on the experiemntal cata. Using the equations, driver's isocomfort workspace in his/her cabin for pushing operation was illustrated, in which the robot kinematics was employed to describe the translational relationships between the upper arm and the lower arm/hand. It was ecpected that isocomfort workspace could be used as a valuable guideline to design workplaces ergonomically.

  • PDF

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

Development of a fully integrated simulation package for industrial robot

  • Lee, Min-Ki;Lee, Gwang-Nam;Lim, Kye-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1028-1032
    • /
    • 1988
  • The purpose of this paper is the development of a fully integrated simulation package for industrial robot. The simulation package consists of kinematics, dynamics, and control. The kinematics contains trajectory plans and inverse kinematics. The dynamics combines manipulator dynamics and actuator dynamics including the effect of payloads and viscous frictions. The control is a hardware oriented scheme which contains position controller, velocity controller, current controller, and PWM generator. Thus, the simulation package can be used not only for theoretical purposes but also for development purposes in industry. Using this package, the characteristics and performances of the SCARA robot, which has been developed in GSIS, are investigated.

  • PDF

A Global Optimal Approach for Robot Kinematics Design using the Grid Method

  • Park Joon-Young;Chang Pyung-Hun;Kim Jin-Oh
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.575-591
    • /
    • 2006
  • In a previous research, we presented the Grid Method and confirmed it as a systematic and efficient problem formulation method for the task-oriented design of robot kinematics. However, our previous research was limited in two ways. First, it gave only a local optimum due to its use of a local optimization technique. Second, it used constant weights for a cost function chosen by the manual weights tuning algorithm, thereby showing low efficiency in finding an optimal solution. To overcome these two limitations, therefore, this paper presents a global optimization technique and an adaptive weights tuning algorithm to solve a formulated problem using the Grid Method. The efficiencies of the proposed algorithms have been confirmed through the kinematic design examples of various robot manipulators.

Inverse Kinematics of Robot Fingers with Three Joints Using Neural Network (신경회로망을 이용한 3관절 로봇 손가락의 역기구학)

  • Kim, Byeong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The inverse kinematics problem in robotics is an essential work for grasping and manipulation tasks by robotic and humanoid hands. In this paper, an intelligent neural learning scheme for solving such inverse kinematics of humanoid fingers is presented. Specifically, a multi-layered neural network is utilized for effective inverse kinematics, where a dynamic neural learning algorithm is employed. Also, a bio-mimetic feature of general human fingers is incorporated to the learning scheme. The usefulness of the proposed approach is verified by simulations.

  • PDF

Realization of an output controller simulator based on Windows NT for a direct drive cooperative robot using OpenGL (Windows NT 환경에서 OpenGL을 이용한 직접구동 협조로봇용 Output Tracking 시뮬레이터 구현)

  • 최대범;양연모;안병하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.346-349
    • /
    • 1995
  • In this paperwe develop a real-time simulator for direct drive cooperative robot by using OpenGL in a Windows NT based system. This simulator is composed of 2 parts, a display part and an interface part. In the display part the robot is modelled and rendered in 3D space. To do this OpenGL, a kind of graphic library, is used for rendering and animating robots and kinematics gives the information of the current robot configuration. The control and the feedback data are sent and received via the interface part. In real time simulation interfacing part needs fast data transfer rate and good nosic immunity. In experiment we have simulated 2-link direct drive cooperative robots using the trajectory tracking algorithm proposed in reference.

  • PDF