• Title/Summary/Keyword: robot detection

Search Result 584, Processing Time 0.022 seconds

Design and Implementation of AR Model based Automatic Identification and Restoration Scheme for Line Scratches in Old Films (AR 모델 기반의 고전영화의 긁힘 손상의 자동 탐지 및 복원 시스템 설계와 구현)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.47-54
    • /
    • 2010
  • Old archived film shows two major defects: line scratch and blobs. In this paper, we present a design and implementation of an automatic video restoration system for line scratches observed in archived film. We use autoregressive (AR) image model because we can make stochastic and specifically autoregressive image generation process with our PAST-PRESENT model and Sampling Pattern. We designed locality maximizing scanning pattern, which can generate nearly stationary time-like series of pixels, which is a strong requirement for a stochastic series to be autoregressive. The sampled pixel series undergoes filtering and model fitting using Durbin-Levinson algorithm before interpolation process. We designed three-stage film restoration system, which includes (1) film acquisition from VHS tapes, (2) simple line scratch detection and restoration, and (3) manual blob identification and sophisticated inpainting scheme. We implemented film acquisition and simple inpainting scheme on Texas Instruments DSP board TMS320DM642 EVM, and implemented our AR inpainting scheme on PC for sophisticated restoration. We experimented our scheme with two old Korean films: "Viva Freedom" and "Robot Tae-Kwon-V", and the experimental results show that our scheme improves Bertalmio's scheme for subjective quality (MOS), objective quality (PSNR), and especially restoration ratio (RR), which reflects how much similar to the manual inpainting results.

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

A 3-D Vision Sensor Implementation on Multiple DSPs TMS320C31 (다중 TMS320C31 DSP를 사용한 3-D 비젼센서 Implementation)

  • Oksenhendler, V.;Bensrhair, Abdelaziz;Miche, Pierre;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.124-130
    • /
    • 1998
  • High-speed 3D vision systems are essential for autonomous robot or vehicle control applications. In our study, a stereo vision process has been developed. It consists of three steps : extraction of edges in right and left images, matching corresponding edges and calculation of the 3D map. This process is implemented in a VME 150/40 Imaging Technology vision system. It is a modular system composed by a display, an acquisition, a four Mbytes image frame memory, and three computational cards. Programmable accelerator computational modules are running at 40 MHz and are based on TMS320C31 DSP with a $64{\times}32$ bit instruction cache and two $1024{\times}32$ bit internal RAMs. Each is equipped with 512 Kbytes static RAM, 4 Mbytes image memory, 1 Mbytes flash EEPROM and a serial port. Data transfers and communications between modules are provided by three 8 bit global video bus, and three local configurable pipeline 8 bit video bus. The VME bus is dedicated to system management. Tasks between DSPs are distributed as follows: two DSPs are used to edges detection, one for the right image and the other for the left one. The last processor computes the matching process and the 3D calculation. With $512{\times}512$ pixels images, this sensor generates dense 3D maps at a rate of about 1 Hz depending of the scene complexity. Results can surely be improved by using a special suited multiprocessors cards.

  • PDF

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.