• Title/Summary/Keyword: road vehicle

Search Result 2,531, Processing Time 0.027 seconds

The Development of Collision Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Range Sensors

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.1-23
    • /
    • 2001
  • The unmanned vehicle is composed of three parts the front & side sensor system for keeping the lane and avoiding obstacles, the acceleration & brake control system for longitudinal motion control, and the steering control system for the lateral motion control. Each system helps the unmanned vehicle of which should take notice of its location and recognize obstacles around the place by itself and make a decision how much fast to proceed according to circumstances. During the operation, the control strategy that the vehicle can detect obstacles and avoid collision on the road involves with vehicle velocity very much. Therefore, We have to define a traction system which is powered by DC motor so that, unmanned vehicle can control its velocity accurately. In this study, we find mechanical and ...

  • PDF

A Carge-discharge System of a Solar-Electric Vehicle (태양광-전기자동차의 충전·방전 시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Design of an electric power system on the solar-electric vehicle is very important because sunlight intensity is changed by weather conditions and road environments. Power output of solar module on the vehicle being changed by unsteady sunlight intensity. In this paper, design method of an electric power system are proposed to generate steady electric power output. The test results shows the electric power system are effective because the solar-electric vehicle have steady driving speed under unsteady sunlight conditions.

Strategy for V2E Performance Assurance Technology Development Using the Kano Model (Kano 모델을 활용한 V2E 성능확보기술 개발 전략)

  • Jang, Jeong Ah;Son, Sungho;Lee, Jung Ki
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Automated vehicles (AVs) are coming to our roadways. In practice, there are still several challenges that can impede the AV sensors are polluted on various road conditions. In this paper, we propose a strategy for V2E performance assurance technology using Kano model. We are developing the vehicle sensor cleaning system about the three types of commonly used sensors: camera, radar, and LiDAR. Surveys were carried out in 30 AV's experts on quality characteristics about V2E performance assurance technology. As a result, the Kano model developed to verify a major requirement of autonomous vehicle's sensor cleaning system. It is expected that the Kano model will be actively used to verify the importance of V2E development strategy.

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

Vehicle Classification and Tracking Based on Deep Learning

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of Web Engineering
    • /
    • v.21 no.4
    • /
    • pp.1283-1294
    • /
    • 2022
  • Traffic volume is gradually increasing due to the development of technology and the concentration of people in cities. As the results, traffic congestion and traffic accidents are becoming social problems. Detecting and tracking a vehicle based on computer vision is a great helpful in providing important information such as identifying road traffic conditions and crime situations. However, vehicle detection and tracking using a camera is affected by environmental factors in which the camera is installed. In this paper, we thus propose a deep learning based on vehicle classification and tracking scheme to classify and track vehicles in a complex and diverse environment. Using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

A study on the improvement of vehicle fuel economy by fuel-cut driving (연료차단 주행에 의한 연비 개선 효과에 대한 연구)

  • Ko, Kwang-Ho;Choi, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.498-503
    • /
    • 2012
  • It happens that the fuel is not injected when the driver doesn't push the acceleration pedal of vehicle with engine speed higher than 1,500rpm above the mid range of vehicle speed. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated frequently on the downhill area of highway and the quantity of vehicle-exhausted $CO_2$ gas can be zero on this area. With this fuel-cut function on the test highway, $CO_2$ gas from passenger car(2,000cc engine volume) can be reduced up to 4%. The fuel-cut function with CRUISE made in company AVL is simulated to find the most effective driving pattern on the downhill area. By simulating with CRUISE software, it is found that the lower limit of vehicle speed for fuel-cut should be raised to improve the fuel economy on the steeper downhill road. The fuel economy can be most economical when fuel-cut driving and reacceleration are completed on the section of downhill road.

Road Test Scenario and Performance Assessments of Lane Keeping Assistance System for Passenger Vehicles (승용자동차 차로유지지원장치의 주행 성능 평가)

  • Woo, Hyungu;Yong, Boojoong;Kim, Kyungjin;Lim, Jaehwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.255-263
    • /
    • 2016
  • Lane Keeping Assistance System (LKAS) is a kind of Advanced Driver Assistance Systems (ADAS) which are developed to automate/ adapt/ enhance vehicle systems for safety and better driving. The main system function of LKAS is to support the driver in keeping the vehicle within the current lane. LKAS acquires information on the position of the vehicle within the lane and, when required, sends commands to actuators to influence the lateral movement of the vehicle. Recently, the vehicles equipped with LKAS are commercially available in a few vehicle-advanced countries and the installation of LKAS increases for safety enhancement. The test procedures for LKAS evaluations are being discussed and developed in the international committees such as ISO (the International Organization for Standardization) and UNECE (United Nations Economic Commission for Europe). In Korea, the evaluations of LKAS for vehicle safety are planned to be introduced in 2016 KNCAP (Korean New Car Assessment Program). Therefore, the test procedures of LKAS suitable for domestic road and traffic conditions, which accommodate international standards, should be developed. In this paper, some bullet points of the test procedures for LKAS are discussed and proposed by extensive researches of previous documents and reports, which are released in public in regard to lateral test procedures including LKAS and Lane Departure Warning System (LDWS). And then, to evaluate the validity of the proposed test procedures, a series of experiments were conducted using commercially available two vehicles equipped with LKAS. Later, it can be helpful to make a draft considering domestic traffic situations for test procedures of LKAS.

An Experimental Study on Reduction of $CO_2$ Exhausted Emission by using Fuel-cut Function of Vehicles (고속도로 주행 시 연료차단 기능을 활용한 $CO_2$ 배출량 감축에 대한 실험적 연구)

  • Ko, Kwang-Ho;Jeong, Seung-Hyun;Yoo, In-Kyoon;Lee, Soo-Hyung;Kim, Je-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.86-92
    • /
    • 2010
  • The fuel is not injected when the driver doesn't push acceleration pedal of a vehicle with engine speed higher than about 1,500rpm above mid vehicle speed range. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated on downhill part of a highway most often. Therefore the vehicle-exhausted $CO_2$ can be zero in this downhill part if the driver could recognize this part of highway. We compared the vehicle-exhausted $CO_2$ emission when using fuel-cut function with the $CO_2$ mass when without using this function in this study. We found that the $CO_2$ emission reduced with fuel-cut function and measured the reduction rate of vehicle-exhausted $CO_2$ mass with this test results. The exhausted $CO_2$ mass of a passenger car(2,000cc engine volume) is reduced by 4% with this function used. This $CO_2$ reduction effect can be achieved if the downhill part of a highway is painted with a specific color. And this road painting can be included in the highway road rehabilitation policy.

A Study of Intelligent Head Up Display System for Next Generation Vehicle (차세대 자동차를 위한 HUD 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • In this paper, the intelligent smart monitor system is implemented for the next generation vehicle. to mitigate the numerous effects of distractions within the vehicle, it is vital to put critical information where the driver can use it without affection focus on the road ahead. Audible alarms are useful supplements when used in conjunction with visual displays. But driving is an overwhelmingly visual task. To optimize a vehicle's active safety systems, more than just audible alarms are necessary. The driver needs a visual interface that focuses his or her attention on the road ahead. The most commonly viewed information in a vehicle is from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to intelligent integrated smart monitor system. Finally, in this paper, we analyze intelligent integrated smart monitor system for driver safety vehicles.

Accident Analysis and Discussion of Circular Intersections based on Land Use and Vehicle Type (토지이용과 차종에 근거한 원형교차로 사고분석 및 논의)

  • Lee, Min Yeong;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2018
  • PURPOSES : This study aimed to analyze traffic accidents at circular intersections, and discuss accident reduction strategies based on land use and vehicle type. METHODS : Traffic accident data from 2010 to 2014 were collected from the "traffic accident analysis system" (TAAS) data set of the Road Traffic Authority. To develop the accident rate model, a multiple linear regression model was used. Explanatory variables such as geometry and traffic volume were used to develop the models. RESULTS : The main results of the study are as follows. First, it was found that the null hypotheses that land use and vehicle type do not affect the accident rate should be rejected. Second, 16 accident rate models, which are statistically significant (with high $R^2$ values), were developed. Finally, the area of the central island, number of speed humps, entry lane width, circulatory roadway width, bus stops, and pedestrian crossings were analyzed to determine their effect on accidents according to the type of land use and vehicle. CONCLUSIONS : Through the developed accident rate models, it was revealed that the accident factors at circular intersections changed depending on land use and vehicle type. Thus, selecting the appropriate location of bus stops for trucks, widening entry lanes for cars, and installing splitter islands and optimal lighting for motorcycles were determined to be important for reducing the accident rate. Additionally, the evaluation showed that commercial and mixed land use had a weaker effect on accidents than residential land use.