• Title/Summary/Keyword: road surface

Search Result 1,017, Processing Time 0.026 seconds

Generation of Road Surface Profiles with a Power Spectral Density Function (전력밀도함수를 이용한 노면형상 생성에 관한 연구)

  • 김광석;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.136-145
    • /
    • 1997
  • To analyzed ride quality and to predict durability in vehicle dynamics, it is essential to describe a road surface profile precisely. This paper presents a technique to generate road surface profiles in a spatial domain by using a power spectral density function. A single track power spectral density function is proposed to describe a road surface profile, which is also applicable for multi-track vehicle response analysis, The derived road surfaces are compared to ISO(International Organization for Standardization) standards and classifications, proposed by the MIRA(Motor Industry Research Association). The methodology in this paper is also proposed to generate road roughness description with a limited external data. A small amount of external curve data is combined with an internal PSD function to generate road surface roughness in a spatial domain.

  • PDF

Bridge Road Surface Frost Prediction and Monitoring System (교량구간의 결빙 예측 및 감지 시스템)

  • Sin, Geon-Hun;Song, Young-Jun;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents a bridge road surface frost prediction and monitoring system. The node sensing hardware comprises microprocessor, temperature sensors, humidity sensors and Zigbee wireless communication. A software interface is implemented the control center to monitor and acquire the temperature and humidity data of bridge road surface. A bridge road surface frost occurs when the bridge deck temperature drops below the dew point and the freezing point. Measurement data was used for prediction of road surface frost occurrences. The actual alert is performed at least 30 minutes in advance the road surface frost. The road surface frost occurrences data are sent to nearby drivers for traffic accidents prevention purposes.

Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly (노인용 보행보조기의 안전성 향상을 위한 노면 상태 및 기울기 추정)

  • Park, Gi-Dong;Kim, Jong-Hwa;Choi, Jin-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • This paper proposes a method for estimating the road surface condition and tilt angle using an inertial measurement unit (IMU) to improve the safety in the use of mobility aids for the elderly. The measurements of the accelerometers of the IMU usually include the accelerations caused by not only the gravitational force but also linear and rotational motions. Thus, the gravitational accelerations are first extracted using several physical constraints and then incorporated into the Kalman filter to estimate the tilt angle. In addition, because the magnitudes of the accelerations produced by the rotational motions (roll and pitch motions) vary with the road surface condition, a criterion based on such accelerations is presented to classify the condition of the road surface. The obtained road surface condition and tilt angle are finally combined to provide the safety information (e.g., safe, warning, and danger) for the user to improve the walking safety. Experiments were carried out and the results showed that the proposed method can provide the condition of the road surface, the tilt of the road surface, and the safety information correctly.

A study on road ice prediction by applying road freezing evaluation model (도로 노면결빙 판정모델을 적용한 도로결빙 예측에 대한 연구)

  • Lim, Hee-Seob;Kim, Sang-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1507-1516
    • /
    • 2020
  • This study analyzed the scenario for road freezing section by applying the road freezing evaluation algorithm. To apply road freezing algorithm, the influencing factors on road freezing were reviewed. Observation data from four points, Mokgam IC, Jeongneung tunnel, Seongsan bridge, and Yeomchang bridge were used for analysis. All observatories are installed on the expressway, and they are classified for the analysis of road freezing characteristics. When the difference between the road surface temperature and dew-point temperature of the road freezing evaluation algorithm was 3℃ or less, the section where road freezing occurred was checked. In addition, road freezing evaluation was derived through the change of the road surface condition and water film thickness of the freezing section.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

Study on temperature characteristics in depth of concrete pavement for development of prediction method of road surface freezing (노면결빙 예측기법 개발을 위한 콘크리트 포장의 깊이별 온도특성 연구)

  • Kim, Jong-Woo;Kim, Ho-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.391-392
    • /
    • 2010
  • The frozen road is effected as major cause of car accident in winter. Especially, road surface freezing on the highway can lead to fatal accident. The accident by frozen road can effectively reduced by prevent road surface freezing before it frozen as evaluate road surface condition. Therefore, this study installed thermometer in each depth of concrete pavement for evaluate road surface conditions which freezing chronically. The result of this study will be used as preliminary data for predict before freezing.

  • PDF

An Experimental Evaluation of Friction Noise between Road Surface and Tyre (포장노면 종류에 따른 타이어/노면 마찰 소음의 실험적 평가)

  • Kim, J.H.;Choi, T.M.;Moon, S.H.;Seo, Y.G.;Park, J.S.;Do, C.S.;Cho, D.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1067-1073
    • /
    • 2006
  • In this paper, we present noise measurement results of 8 vehicles. The measurement was done by a close proximity method attaching surface microphones on the test vehicle. For the 9 road surface types constructed at Korean highway test road, the vehicles were tested from 50 to 120 km/h at the interval of 10 km/h in normal steady state and inertia cruising conditions. Using the results, we evaluate and discuss the effect of vehicle noise generation depending on the different conditions for vehicle type, speed, road surface and loading condition, especially focused on friction noise between tyre and road surface.

An Experimental Evaluation of Friction Noise between Road Surface and Tyre (포장노면 종류에 따른 타이어/노면 마찰 소음의 실험적 평가)

  • Kim, J.H.;Cho, D.S.;Choi, T.M.;Mun, S.H.;Seo, Y.G.;Park, J.S.;Do, C.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.428-433
    • /
    • 2006
  • In this paper, we present noise measurement results of 8 vehicles. The measurement was done by a close proximity method attaching surface microphones on the test vehicle. For the 9 road surface types constructed at Korean highway test road, the vehicles were tested from 50 to 120 km/h at the interval of 10 km/h in normal steady state and inertia cruising conditions. Using the results, we evaluate and discuss the effect of vehicle noise generation depending on the different conditions for vehicle type, speed, road surface and loading condition, especially focused on friction noise between tyre and road surface.

  • PDF

Analysis of Road Surface Temperature Change Patterns using Machine Learning Algorithms (기계학습을 이용한 노면온도변화 패턴 분석)

  • Yang, Choong Heon;Kim, Seoung Bum;Yoon, Chun Joo;Kim, Jin Guk;Park, Jae Hong;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.35-44
    • /
    • 2017
  • PURPOSES: This study suggests a specific methodology for the prediction of road surface temperature using vehicular ambient temperature sensors. In addition, four kind of models is developed based on machine learning algorithms. METHODS : Thermal Mapping System is employed to collect road surface and vehicular ambient temperature data on the defined survey route in 2015 and 2016 year, respectively. For modelling, all types of collected temperature data should be classified into response and predictor before applying a machine learning tool such as MATLAB. In this study, collected road surface temperature are considered as response while vehicular ambient temperatures defied as predictor. Through data learning using machine learning tool, models were developed and finally compared predicted and actual temperature based on average absolute error. RESULTS : According to comparison results, model enables to estimate actual road surface temperature variation pattern along the roads very well. Model III is slightly better than the rest of models in terms of estimation performance. CONCLUSIONS : When correlation between response and predictor is high, when plenty of historical data exists, and when a lot of predictors are available, estimation performance of would be much better.

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.