• Title/Summary/Keyword: road surface

Search Result 1,011, Processing Time 0.03 seconds

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature (노면온도 변화 패턴의 신뢰성 검증 및 노면온도에 근거한 도로구간 분할 방법 연구)

  • Yang, Choong Heon;Yoon, Chun Joo;Kim, Jin Guk;Park, Jae Hong;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.

A Study on Factors that Influence Traffic Accident Severity in Road Surface Freezing (결빙구간의 교통사고 심각도 영향 요인 연구)

  • Lee, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.150-156
    • /
    • 2017
  • A frozen road surface increases traffic accidents during the winter season. Hence, information on easily-frozen road sections and their specificities are required to prevent traffic accidents. Frozen road surfaces are determined by equipment measuring road surface temperatures. However, there are limitations in investigating the entire road network. Therefore, it is imperative to develop new methods that effectively determine road surface freezing risks. Meteorologically, road surfaces are frozen when the actual temperature cools down to the dew point temperature. Under this condition, there is likely to be frost if relative humidity reaches 100% and frozen road surfaces as the temperature gets lower. Meteorological characteristics give us an alternative to a direct measurement road surface temperature to estimate risks of road surface freezing. Based on the clues, the relationship between severity of traffic accidents and temperature changes is empirically investigated using Paju weather data. The results reveal that as the temperature gets lower and changes in current temperature are relatively small, the severity of traffic accidents become higher. In addition, the same is true when the difference between current temperature and the dew point temperature is relatively small, as it increases possibilities of road surface freezing. Future studies must investigate how current temperature and the dew point temperature affect road surface freezing and thereby establish a time-space scope to estimate possible road surface freezing sections using only weather and road material type data. This would provide invaluable information for predicting and preventing frozen road accidents based on weather patterns.

Recognition of Road Surface Marks and Numbers Using Connected Component Analysis and Size Normalization (연결 성분 분석과 크기 정규화를 이용한 도로 노면 표시와 숫자 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • This paper proposes a new method for the recognition of road surface marks and numbers. The proposed method designates a region of interest on the road surface without first detecting a lane. The road surface markings are extracted by location and size using a connection component analysis. Distortion due to the perspective effect is minimized by normalizing the size of the road markings. The road surface marking of the connected component is recognized by matching it with the stored road marking templates. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the recognition of road surface marks and numbers.

An Experimental Study of Tire-Road Friction Coefficient by Transient Brake Time (실차 실험을 통한 제동순시간에 의한 타이어-노면마찰계수에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin;Lee, Jong-Sang;Shin, Un-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.106-111
    • /
    • 2007
  • In this paper, the transient brake time was studied on the van type vehicle with accelerometer. Experiments were carried out on the asphalt(new and polished), unpacked road(earth and gravel) and on wet or dry road conditions. The transient brake time is not effected bzy the vehicle speed. The transient brake time is about 0.41$\sim$0.43second on the asphalt road surface and the error range is within 0.1$\sim$0.16second. For the asphalt road condition, the transient brake time is not effected by both new asphalt road surface and the polished asphalt road surface. With compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition and compared with unpacked road condition and packed road condition, unpacked road condition is shorter than packed road condition. It is considered that the transient brake time is effected by the road surface fraction coefficient. In other words, the transients brake time increases as friction coefficient decreases.

A Development of Stereo Camera based on Mobile Road Surface Condition Detection System (스테레오카메라 기반 이동식 노면정보 검지시스템 개발에 관한 연구)

  • Kim, Jonghoon;Kim, Youngmin;Baik, Namcheol;Won, Jaemoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.177-185
    • /
    • 2013
  • PURPOSES : This study attempts to design and establish the road surface condition detection system by using the image processing that is expected to help implement the low-cost and high-efficiency road information detection system by examining technology trends in the field of road surface condition information detection and related case studies. METHODS : Adapted visual information collecting method(setting a stereo camera outside of the vehicle) and visual information algorithm(transform a Wavelet Transform, using the K-means clustering) Experiments and Analysis on Real-road, just as four states(Dry, Wet, Snow, Ice). RESULTS : Test results showed that detection rate of 95% or more was found under the wet road surface, and the detection rate of 85% or more in snowy road surface. However, the low detection rate of 30% was found under the icy road surface. CONCLUSIONS : As a method to improve the detection rate of the mobile road surface condition information detection system developed in this study, more accurate phase analysis in the image processing process was needed. If periodic synchronization through automatic settings of the camera according to weather or ambient light was not made at the time of image acquisition, a significant change in the values of polarization coefficients occurs.

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

Developing Models for Patterns of Road Surface Temperature Change using Road and Weather Conditions (도로 및 기상조건을 고려한 노면온도변화 패턴 추정 모형 개발)

  • Kim, Jin Guk;Yang, Choong Heon;Kim, Seoung Bum;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-135
    • /
    • 2018
  • PURPOSES : This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS : Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS : Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.

Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis (노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰)

  • Seo, Beom Gyo;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.

The Study on the Analysis of Road Surface Brightness of Low Mounted Road Lighting System (낮은 도로 조명의 노면 휘도 실태 분석에 대한 연구)

  • Kiho Nam;Chung Hyeok Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.314-321
    • /
    • 2024
  • Low road lighting is a lighting device that complements the shortcomings of existing pillar-type street lights. It is a lighting device that emits light from the side of the road surface and adjusts the luminance of the road surface like a light carpet. In this paper, to achieve full commercialization, we analyzed the luminance of the installed road surface and studied whether lighting could replace existing road lighting. In this study, the LMK (Luminance Measurement Camera) LABSOFT program was used to measure and analyze the surface luminance of road lighting, and the RELUX program was used to evaluate and analyze the simulation performance to determine light-based lighting conditions. A study was conducted to determine whether replacing pillar-type road lighting with low-level road lighting in a real environment would ensure comfortable and safe night vision for drivers at night.