• Title/Summary/Keyword: road scene

Search Result 80, Processing Time 0.02 seconds

Saliency-Assisted Collaborative Learning Network for Road Scene Semantic Segmentation

  • Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.861-880
    • /
    • 2023
  • Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.

Video Content Manipulation Using 3D Analysis for MPEG-4

  • Sull, Sanghoon
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-135
    • /
    • 1997
  • This paper is concerned with realistic mainpulation of content in video sequences. Manipulation of content in video sequences is one of the content-based functionalities for MPEG-4 Visual standard. We present an approach to synthesizing video sequences by using the intermediate outputs of three-dimensional (3D) motion and depth analysis. For concreteness, we focus on video showing 3D motion of an observer relative to a scene containing planar runways (or roads). We first present a simple runway (or road) model. Then, we describe a method of identifying the runway (or road) boundary in the image using the Point of Heading Direction (PHD) which is defined as the image of, the ray along which a camera moves. The 3D motion of the camera is obtained from one of the existing 3D analysis methods. Then, a video sequence containing a runway is manipulated by (i) coloring the scene part above a vanishing line, say blue, to show sky, (ii) filling in the occluded scene parts, and (iii) overlaying the identified runway edges and placing yellow disks in them, simulating lights. Experimental results for a real video sequence are presented.

  • PDF

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

An Onboard Image Processing System for Road Images (도로교통 영상처리를 위한 고속 영상처리시스템의 하드웨어 구현)

  • 이운근;이준웅;조석빈;고덕화;백광렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.498-506
    • /
    • 2003
  • A computer vision system applied to an intelligent safety vehicle has been required to be worked on a small sized real time special purposed hardware not on a general purposed computer. In addition, the system should have a high reliability even under the adverse road traffic environment. This paper presents a design and an implementation of an onboard hardware system taking into account for high speed image processing to analyze a road traffic scene. The system is mainly composed of two parts: an early processing module of FPGA and a postprocessing module of DSP. The early processing module is designed to extract several image primitives such as the intensity of a gray level image and edge attributes in a real-time Especially, the module is optimized for the Sobel edge operation. The postprocessing module of DSP utilizes the image features from the early processing module for making image understanding or image analysis of a road traffic scene. The performance of the proposed system is evaluated by an experiment of a lane-related information extraction. The experiment shows the successful results of image processing speed of twenty-five frames of 320$\times$240 pixels per second.

Lane Detection Using Road Geometry Estimation

  • Lee, Choon-Young;Park, Min-Seok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.226-231
    • /
    • 1998
  • This paper describes how a priori road geometry and its estimation may be used to detect road boundaries and lane markings in road scene images. We assume flat road and road boundaries and lane markings are all Bertrand curves which have common principal normal vectors. An active contour is used for the detection of road boundary, and we reconstruct its geometric property and make use of it to detect lane markings. Our approach to detect road boundary is based on minimizing energy function including edge related term and geometric constraint term. Lane position is estimated by pixel intensity statistics along the parallel curve shifted properly from boundary of the road. We will show the validity of our algorithm by processing real road images.

  • PDF

Directional texture information for connecting road segments in high spatial resolution satellite images

  • Lee, Jong-Yeol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.245-245
    • /
    • 2005
  • This paper addresses the use of directional textural information for connecting road segments. In urban scene, some roads are occluded by buildings, casting shadow of buildings, trees, and cars on streets. Automatic extraction of road network from remotely sensed high resolution imagery is generally hindered by them. The results of automatic road network extraction will be incomplete. To overcome this problem, several perceptual grouping algorithms are often used based on similarity, proximity, continuation, and symmetry. Roads have directions and are connected to adjacent roads with certain angles. The directional information is used to guide road fragments connection based on roads directional inertia or characteristics of road junctions. In the primitive stage, roads are extracted with textural and direction information automatically with certain length of linearity. The primitive road fragments are connected based on the directional information to improve the road network. Experimental results show some contribution of this approach for completing road network, specifically in urban area.

  • PDF

Virtual Reality and Internet GIS for Highway Simulation Based on the ASE

  • Choi Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.433-443
    • /
    • 2005
  • This paper show that, without installation of expensive VR (Virtual Reality) program, the sharing information is possible through posting three-dimensional road structures on the web, and avoiding the conventional top-down decision making method, fast bottom-up communication is possible base on the Virtual GIS (Geographic Information System). In this paper, using Viewpoint Scene Builder, internet-based software, the transformation was conducted to give pertinent type for web posting. In order to use the completed route at the scene builder, the output with ASCII Export is required, and ASE (ASCII Scene Export) contains the property information including the coordinate and frame of mesh vertex. Through in advance recognition of the problems regarding route design and petition due to environmental rights infringement, the time and cost due to design alteration can be reduced. It's difficult to provide VR based on the internet because file that embodied with internet GIS was complicated and its capacity comes to scores of mega-bites. But, this study provides VR with internet according to a basis by simplification of files.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Fuzzy Neural Network-Based Noisiness Decision of Road Scene for Lane Detection (퍼지신경망을 이용한 도로 씬의 차선정보의 잡음도 판별)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Kwon, Seok-Geon;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.761-764
    • /
    • 2000
  • This paper presents a Fuzzy Neural Network (FNN) system to decide whether or not the right information of lanes can be extracted from gray-level images of road scene. The decision of noisy level of input images has been required because much noises usually deteriorates the performance of feature detection based on image processing and lead to erroneous results. As input parameters to FNN, eight noisiness indexes are constructed from a cumulative distribution function (CDF) and proved the indexes being classifiers of images as the good and the bad corrupted by sources of noise by correlation analysis between input images and the indexes. Considering real-time processing and discrimination efficiency, the proposed FNN is structured by eight input parameters, three fuzzy variables and single output. We conduct much experiments and show that our system has comparable performance in terms of false-positive rates.

  • PDF

3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots (이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식)

  • Gim Seong-Chan;Kim Jong-Man;Kim Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.