• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.02 seconds

A Study on the Heuristic Search Algorithm on Graph (그라프에서의 휴리스틱 탐색에 관한 연구)

  • Kim, Myoung-Jae;Chung, Tae-Choong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2477-2484
    • /
    • 1997
  • Best-first heuristic search algorithm, such as $A^{\ast}$ algorithm, are one of the most important techniques used to solve many problems in artificial intelligence. A common feature of heuristic search is its high computational complexity, which prevents the search from being applied to problems is practical domains such as route-finding in road map with significantly many nodes. In this paper, several heuristic search algorithms are concerned. A new dynamic weighting heuristic method called the pat-sensitive heuristic is proposed. It is based on a dynamic weighting heuristic, which is used to improve search effort in practical domain such as admissible heuristic is not available or heuristic accuracy is poor. It's distinctive feature compared with other dynamic weighting heuristic algorithms is path-sensitive, which means that ${\omega}$(weight) is adjusted dynamically during search process in state-space search domain. For finding an optimal path, randomly scattered road-map is used as an application area.

  • PDF

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

Development of Location based Broadcast System Model for Real-time Traffic Information (실시간 교통 정보 제공을 위한 LBI 시스템 모델 개발)

  • Park, Hyun-Moon;Park, Woo-Chool;Park, Soo-Huyn
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2010
  • This study presents an RTS(Real-time Traffic System) based on an LBS(Location Based Service) using 5.8~5.9GHz RSU(Road Side Unit). The proposed LBI(Location based Broadcast system on ITS) is a local information-based service supported by RSU for drivers, which has a feature of convergence between T-DMB system and ITS-based RTS. The convergence of local broadcasting station and ITS is realized by two-way communication and supports LBS(Location Based Service) by identifying of vehicle's location using RSU. Real-time information delivery and various services could be provided by information exchanges between LMM and local broadcasting stations. Furthermore, conventional technical limitations have been solved mutually such as transmission area limitation in RTS and one-way communication problem in T-DMB. This support real-time two-way communication to each driver. Therefore, it can be expected that traffic dispersion effects and services expansion for drivers by RTS and LBI. Finally, it is proposed to built and implement test-bed around institute.

Lane Detection Algorithm for Night-time Digital Image Based on Distribution Feature of Boundary Pixels

  • You, Feng;Zhang, Ronghui;Zhong, Lingshu;Wang, Haiwei;Xu, Jianmin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.188-199
    • /
    • 2013
  • This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.

Stereo Vision-Based Obstacle Detection and Vehicle Verification Methods Using U-Disparity Map and Bird's-Eye View Mapping (U-시차맵과 조감도를 이용한 스테레오 비전 기반의 장애물체 검출 및 차량 검증 방법)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.86-96
    • /
    • 2010
  • In this paper, we propose stereo vision-based obstacle detection and vehicle verification methods using U-disparity map and bird's-eye view mapping. First, we extract a road feature using maximum frequent values in each row and column. And we extract obstacle areas on the road using the extracted road feature. To extract obstacle areas exactly we utilize U-disparity map. We can extract obstacle areas exactly on the U-disparity map using threshold value which consists of disparity value and camera parameter. But there are still multiple obstacles in the extracted obstacle areas. Thus, we perform another processing, namely segmentation. We convert the extracted obstacle areas into a bird's-eye view using camera modeling and parameters. We can segment obstacle areas on the bird's-eye view robustly because obstacles are represented on it according to ranges. Finally, we verify the obstacles whether those are vehicles or not using various vehicle features, namely road contacting, constant horizontal length, aspect ratio and texture information. We conduct experiments to prove the performance of our proposed algorithms in real traffic situations.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

Character Element Recognition and Painting Simulation for the Letters to Road Surface (도로 노면 문자 도색을 위한 문자 요소 인식과 도색 실험)

  • Lee, Kyong-Ho;Seong, Jae-Joon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.113-116
    • /
    • 2016
  • 본 논문에서는 사람의 수작업을 통해서 작업을 하고 있는 도로 노면 문자 도색 작업을 자동화하기 위해 문자의 요소 인식과 인식한 결과로 문자 구성 정보를 전달하고, 이 정보를 이용하여 문자를 도색하는 프로그램을 구성하여 도로 노면 문자 도색 모의실험을 수행하였다. 정보처리기기에 프로그램을 구성하여 작업할 문자들을 입력 받아, 이미지 변환과 세선화와 역세선화를 거쳐 만들어진 영상에서 끝점, 2모음점, 3선 이상 모음점, 고립점 등 특징 점들을 추출하고 특징점들을 이용하여 글자를 인식하고, 특징점들을 이용하여 만든 정보를 도로 노면 문자 도색용 장비로 보낸다는 가정 하에 도색 프로그램을 수행 후, 나타난 결과를 피드백 하여 도색 프로그램을 수정하여 도로 노면 문자 도색 작업에 쓸 수 있는 성능의 결과를 구성하였다.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Comparative Study of GDPA and Hough Transformation for Linear Feature Extraction using Space-borne Imagery (위성 영상정보를 이용한 선형 지형지물 추출에서의 GDPA와 Hough 변환 처리결과 비교연구)

  • Lee Kiwon;Ryu Hee-Young;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.261-274
    • /
    • 2004
  • The feature extraction using remotely sensed imagery has been recognized one of the important tasks in remote sensing applications. As the high-resolution imagery are widely used to the engineering purposes, need of more accurate feature information also is increasing. Especially, in case of the automatic extraction of linear feature such as road using mid or low-resolution imagery, several techniques was developed and applied in the mean time. But quantitatively comparative analysis of techniques and case studies for high-resolution imagery is rare. In this study, we implemented a computer program to perform and compare GDPA (Gradient Direction Profile Analysis) algorithm and Hough transformation. Also the results of applying two techniques to some images were compared with road centerline layers and boundary layers of digital map and presented. For quantitative comparison, the ranking method using commission error and omission error was used. As results, Hough transform had high accuracy over 20% on the average. As for execution speed, GDPA shows main advantage over Hough transform. But the accuracy was not remarkable difference between GDPA and Hough transform, when the noise removal was app]ied to the result of GDPA. In conclusion, it is expected that GDPA have more advantage than Hough transform in the application side.

A Study on Geographical Category Classification of Road Names of New Address System : in the Case of Cheongju City (새주소 체계 도로명의 지리적 유형 분류에 관한 연구 - 청주시를 사례로 -)

  • Hong, Seon-il;Kim, Young-Hoon
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.3
    • /
    • pp.553-568
    • /
    • 2015
  • This paper focuses on the geographical characteristics and the spatial distributions and patterns of the road names in the new address system for which all the 183 road names of Cheongju City has been used. All 183 road names in Cheongju City and their textural information are analyzed and classified into four main categories and six divisions as sub-category. Each type is mapped and its spatial patterns are discussed in order to identify the interaction between the road name and the geographical characteristics of each type. From the discussion stated in the paper, it can be inferred that the road name is not only a representative place name in an area, but also presents an important geographical feature reflecting the toponymy of the cultural and historical backgrounds of an area. Therefore, it is necessary to recognize that for road naming, various aspects such as geographical backgrounds and characteristics should be considered. These are directly related to the publicity and utilization of the road names to the public who is still unfamiliar with the new address system to be used. Finally, various geographical topics and approaches such as toponymy and spatial analysis are proposed for further geographical research, which will contribute to the extent of geographical research scopes.

  • PDF