• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.029 seconds

On-Road Car Detection System Using VD-GMM 2.0 (차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축)

  • Lee, Okmin;Won, Insu;Lee, Sangmin;Kwon, Jangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2291-2297
    • /
    • 2015
  • This paper presents a vehicle detection system using the video as a input image what has moving of vehicles.. Input image has constraints. it has to get fixed view and downward view obliquely from top of the road. Road detection is required to use only the road area in the input image. In introduction, we suggest the experiment result and the critical point of motion history image extraction method, SIFT(Scale_Invariant Feature Transform) algorithm and histogram analysis to detect vehicles. To solve these problem, we propose using applied Gaussian Mixture Model(GMM) that is the Vehicle Detection GMM(VDGMM). In addition, we optimize VDGMM to detect vehicles more and named VDGMM 2.0. In result of experiment, each precision, recall and F1 rate is 9%, 53%, 15% for GMM without road detection and 85%, 77%, 80% for VDGMM2.0 with road detection.

The Location Identification Scheme for the Road Management Information System (도로관리정보체계를 위한 도로위치판별방법 설정)

  • Kim, Kwang-Shik;Lee, Kyoo-Seock
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.195-206
    • /
    • 1993
  • As the first step in developing the urban information system it is very important to identify the location of the street, and the feature of objects on it Also it is necessary to understand the relationship between objects concerned. In order to manage these information efficiently, the road information should be well organized and standardized for digital data. Because the road is the base place under which most urban utilities are buried. However, the present real situation is that even if we have unique numbers authorized by law for some parts of the road it is too ambiguous to figure out the spatial location of the specific area because the assigned area is so large and incoherent. Therefore, the purpose of this study is to propose a road location identication scheme, to apply this scheme at Kangnam-ku Seoul, and finally to propose the guideline in developing the road management information system in Korea. The road identification scheme developed in this study are as follows: (1) The road is defined as a fixed factor, and was given the identification number which repressents the funtion, relationship, and direction of the road without the road section and absolute coordinates. (2) The parcel identification nutter was given to each route to understand it possible to understand the location of the road itself and surroundings. (3) To update the md information using the scheme developed in this study relative coordinate method(Dynamic Segmentation) based on the road centerline was applied.

  • PDF

Exploring Optimal Threshold of RGB Pixel Values to Extract Road Features from Google Earth (Google Earth에서 도로 추출을 위한 RGB 화소값 최적구간 추적)

  • Park, Jae-Young;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.66-75
    • /
    • 2010
  • The authors argues that the current road updating system based on traditional aerial photograph or multi-spectral satellite image appears to be non-user friendly due to lack of the frequent cartographic representation for the new construction sites. Google Earth are currently being emerged as one of important places to extract road features since the RGB satellite image with high multi-temporal resolution can be accessed freely over large areas. This paper is primarily intended to evaluate optimal threshold of RGB pixel values to extract road features from Google Earth. An empirical study for five experimental sites was conducted to confirm how a RGB picture provided Google Earth can be used to extact the road feature. The results indicate that optimal threshold of RGB pixel values to extract road features was identified as 126, 125, 127 for manual operation which corresponds to 25%, 30%, 19%. Also, it was found that display scale difference of Google Earth was not very influential in tracking required RGB pixel value. As a result the 61cm resolution of Quickbird RGB data has shown the potential to realistically identified the major type of road feature by large scale spatial precision while the typical algorithm revealed successfully the area-wide optimal threshold of RGB pixel for road appeared in the study area.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

A Black Ice Recognition in Infrared Road Images Using Improved Lightweight Model Based on MobileNetV2 (MobileNetV2 기반의 개선된 Lightweight 모델을 이용한 열화도로 영상에서의 블랙 아이스 인식)

  • Li, Yu-Jie;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1835-1845
    • /
    • 2021
  • To accurately identify black ice and warn the drivers of information in advance so they can control speed and take preventive measures. In this paper, we propose a lightweight black ice detection network based on infrared road images. A black ice recognition network model based on CNN transfer learning has been developed. Additionally, to further improve the accuracy of black ice recognition, an enhanced lightweight network based on MobileNetV2 has been developed. To reduce the amount of calculation, linear bottlenecks and inverse residuals was used, and four bottleneck groups were used. At the same time, to improve the recognition rate of the model, each bottleneck group was connected to a 3×3 convolutional layer to enhance regional feature extraction and increase the number of feature maps. Finally, a black ice recognition experiment was performed on the constructed infrared road black ice dataset. The network model proposed in this paper had an accurate recognition rate of 99.07% for black ice.

A Study on Automation about Painting the Letters to Road Surface

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • In this study, the researchers attempted to automate the process of painting the characters on the road surface, which is currently done by manual labor, by using the information and communication technology. Here are the descriptions of how we put in our efforts to achieve such a goal. First, we familiarized ourselves with the current regulations about painting letters or characters on the road, with reference to Road Mark Installation Management Manual of the National Police Agency. Regarding the graphemes, we adopted a new one using connection components, in Gothic print characters which was within the range of acceptance according to the aforementioned manual. We also made it possible for the automated program to recognize the graphemes by means of the feature dots of the isolated dots, end dots, 2-line gathering dots, and gathering dots of 3 lines or more. Regarding the database, we built graphemes database for plotting information, classified the characters by means of the arrangement information of the graphemes and the layers that the graphemes form within the characters, and last but not least, made the character shape information database for character plotting by using such data. We measured the layers and the arrangement information of the graphemes consisting the characters by using the information of: 1) the information of the position of the center of gravity, and 2) the information of the graphemes that was acquired through vertical exploration from the center of gravity in each grapheme. We identified and compared the group to which each character of the database belonged, and recognized the characters through the use of the information gathered using this method. We analyzed the input characters using the aforementioned analysis method and database, and then converted into plotting information. It was shown that the plotting was performed after the correction.

Study on Establishing Essential Framework for Importing Asset Management System of National Road (일반국도 자산관리시스템 도입을 위한 기본체계 구축에 관한 연구)

  • Park, Hyosung;Lee, Soohyng
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.320-334
    • /
    • 2014
  • The government policy had placed new construction as the kernel of the investment in the road department. This had been shifted, however, since the government's budget of the road department reached its peak in 2000, new construction had came to a downsizing phase while the maintenance increased gradually. Considering this recent trend, the necessity of a new paradigm in the road policy had came to a fore, in order to prove the justification of increase in the maintenance budget as well as successfully fulfill the user's needs in the service quality. The developed countries that had intensively constructed social infrastructure in 1950-60s are enjoying a great achievement by applying the asset management concept in coping with the deterioration of the public facilities. This research suggests the basic framework in establishing "Korean Road Asset Management System" designed to efficiently manage the national road. The main feature of this system is to absorb economic analysis course into the current pavement management system, in order to form not only long-lasting but also preventive road management policy.

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역 원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Jeong, Seung-Gweon;Kim, In-Soo;Kim, Sung-Han;Lee, Dong-Hwoal;Yun, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2001
  • A lane detection based on a road model or feature all needs correct acquirement of information on the lane in an image. It is inefficient to implement a lane detection algorithm through the full range of an image when it is applied to a real road in real time because of the calculating time. This paper defines two (other proper terms including"modes") for detecting lanes on a road. First is searching mode that is searching the lane without any prior information of a road. Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It allows to extract accurately and efficiently the edge candidate points of a lane without any unnecessary searching. By means of inverse perspective transform which removes the perspective effect on the edge candidate points, we transform the edge candidate information in the Image Coordinate System(ICS) into the plan-view image in the World Coordinate System(WCS). We define a linear approximation filter and remove faulty edge candidate points by using it. This paper aims at approximating more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.e fitting.

  • PDF

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF