• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.021 seconds

Line Segments Matching Framework for Image Based Real-Time Vehicle Localization (이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크)

  • Choi, Kanghyeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.

Analysis of Deep Learning-Based Pedestrian Environment Assessment Factors Using Urban Street View Images (도시 스트리트뷰 영상을 이용한 딥러닝 기반 보행환경 평가 요소 분석)

  • Ji-Yeon Hwang;Cheol-Ung Choi;Kwang-Woo Nam;Chang-Woo Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.45-52
    • /
    • 2023
  • Recently, as the importance of walking in daily life has been emphasized, projects to guarantee walking rights and create a pedestrian environment are being promoted throughout the region. In previous studies, a pedestrian environment assessment was conducted using Jeonju-si road images, and an image comparison pair data set was constructed. However, data sets expressed in numbers have difficulty in generalizing the judgment criteria of pedestrian environment assessors or visually identifying the pedestrian environment preferred by pedestrians. Therefore, this study proposes a method to interpret the results of the pedestrian environment assessment through data visualization by building a web application. According to the semantic segmentation result of analyzing the walking environment components that affect pedestrian environment assessors, it was confirmed that pedestrians did not prefer environments with a lot of "earth" and "grass," and preferred environments with "signboards" and "sidewalks." The proposed study is expected to identify and analyze the results randomly selected by participants in the future pedestrian environment evaluation, and believed that more improved accuracy can be obtained by pre-processing the data purification process.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Using play-back image sequence to detect a vehicle cutting in a line automatically (역방향 영상재생을 이용한 끼어들기 차량 자동추적)

  • Rheu, Jee-Hyung;Kim, Young-Mo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • This paper explains effective tracking method for a vehicle cutting in a line on the road automatically. The method employs KLT based on optical flow using play-back image sequence. Main contribution of this paper is play-back image sequence that is in order image frames for rewind direction from a reference point in time. The moment when recognizing camera can read a license plate very well can usually be the reference point in time. The biggest images of object traced can usually be obtained at this moment also. When optic flow is applied, the bigger image of the object traced can be obtained, the more feature points can be obtained. More many feature points bring good result of tracking object. After the recognizing cameras read a license plate on the vehicle suspected of cut-in-line violation, and then the system extracts the play-back image sequence from the tracking cameras for watching wide range. This paper compares using play-back image sequence as normal method for tracking to using play-forward image sequence as suggested method on the results of the experiment and also shows the suggested algorithm has a good performance that can be applied to the unmanned system for watching cut-in-line violation.

Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model (운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템)

  • Kim, Jihun;Jo, Hyunrae;Jang, Giljin;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • This paper proposes a system to detect driver's cognitive state by internal and external information of vehicle. The proposed system can measure driver's eye gaze. This is done by concept of information delivery and mutual information measure. For this study, we set up two web-cameras at vehicles to obtain visual information of the driver and front of the vehicle. We propose Gestalt principle based selective attention model to define information quantity of road scene. The saliency map based on gestalt principle is prominently represented by stimulus such as traffic signals. The proposed system assumes driver's cognitive resource allocation on the front scene by gaze analysis and head pose direction information. Then we use several feature algorithms for detecting driver's characteristics in real time. Modified census transform (MCT) based Adaboost is used to detect driver's face and its component whereas POSIT algorithms are used for eye detection and 3D head pose estimation. Experimental results show that the proposed system works well in real environment and confirm its usability.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

A Moving Synchronization Technique for Virtual Target Overlay (가상표적 전시를 위한 이동 동기화 기법)

  • Kim Gye-Young;Jang Seok-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.4
    • /
    • pp.45-55
    • /
    • 2006
  • This paper proposes a virtual target overlay technique for a realistic training simulation which projects a virtual target on ground-based CCD images according to an appointed scenario. This method creates a realistic 3D model for instructors by using high resolution GeoTIFF (Geographic Tag Image File Format) satellite images and DTED(Digital Terrain Elevation Data), and it extracts road areas from the given CCD images for both instructors and trainees, Since there is much difference in observation position, resolution, and scale between satellite Images and ground-based sensor images, feature-based matching faces difficulty, Hence, we propose a moving synchronization technique that projects the targets on sensor images according to the moving paths marked on 3D satellite images. Experimental results show the effectiveness of the proposed algorithm with satellite and sensor images of Daejoen.

  • PDF

Digital Mapping Based on Digital Ortho Images (수치정사투영영상을 이용한 수치지도제작)

  • 이재기;박경식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the recent day, the necessity and the effective usage are increased rapidly, and it is applied in many other fields as well as in the field of ortho-photo map. In this study, we extract each objects on the aerial image and automatically classify graphic information to produce digital map using only digital ortho-image without particular drawing devices for producing digital map. For this purpose, we have applied a lot of the image processing techniques and fuzzy theory, classified outline and lane of road and building, and had each layer according to each feature. Especially, in the case of the building, the outer vector lines extracted by pixel unit at the building were very complex, but we have developed the program to be expressed by I-dimensional linear type between building corners. In the result of this study, we could not extract and recognize all of the object on the image all together, but we have got the error within 50cm using semi-automatic technique. Therefore, this method will be used effectively in producing 1/5,000 digital map.

  • PDF

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.