• Title/Summary/Keyword: road environment detection

Search Result 98, Processing Time 0.027 seconds

Vision-based Vehicle Detection Using HOG and OS Fuzzy-ELM (HOG와 OS 퍼지-ELM를 이용한 비전 기반 차량 검출 시스템)

  • Yoon, Changyong;Lee, Heejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.621-628
    • /
    • 2015
  • This paper describes an algorithm for detecting vehicles detection in real time. The proposed algorithm has the technique based on computer vision and image processing. In real, complex environment such as one with road traffic, many algorithms have great difficulty such as low detection rate and increasing computational time due to complex backgrounds and rapid changes. To overcome this problem in this paper, the proposed algorithm consists of the following methods. First, to effectively separate the candidate regions, we use vertical and horizontal edge information, and shadow values from input image sequences. Second, we extracts features by using HOG from the selected candidate regions. Finally, this paper uses the OS fuzzy-ELM based on SLFN to classify the extracted features. The experimental results show that the proposed method perform well for detecting vehicles and improves the accuracy and the computational time of detecting.

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

A Method and Hardware Architecture of Drivable Area Detection Based on Filtering in Road Environment Including Vegetation (초목을 포함한 도로 환경에서의 필터링 기반 주행 가능 영역 검출 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.536-539
    • /
    • 2021
  • 초목을 포함한 도로 환경에서, 초목 영역은 도로의 특성과 매우 유사하므로 주행 가능 영역으로 판단될 수 있다. 또한, 도로 검출을 위한 대부분의 U-V 시차 기반 하드웨어 시스템에서는 한 프레임의 시차가 모두 입력되기 전까지 다음 단계의 연산을 수행할 수 없는 문제가 있다. 이에 본 논문에서는 간단한 필터링 기법를 적용하여 초목을 포함한 도로 환경에서 즉각적으로 주행 가능 영역을 검출하는 방법 및 그 하드웨어 구조를 제안한다. 제안하는 방법은 93.08%의 정확도를 보인다. 또한, 제안하는 하드웨어 구조는 기존 방법보다 Slice LUTs 기준 60.26% 및 Slice Registers 기준 53.62% 적은 하드웨어 자원을 사용한다.

Vehicle Classification and Tracking Based on Deep Learning

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of Web Engineering
    • /
    • v.21 no.4
    • /
    • pp.1283-1294
    • /
    • 2022
  • Traffic volume is gradually increasing due to the development of technology and the concentration of people in cities. As the results, traffic congestion and traffic accidents are becoming social problems. Detecting and tracking a vehicle based on computer vision is a great helpful in providing important information such as identifying road traffic conditions and crime situations. However, vehicle detection and tracking using a camera is affected by environmental factors in which the camera is installed. In this paper, we thus propose a deep learning based on vehicle classification and tracking scheme to classify and track vehicles in a complex and diverse environment. Using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Deforestation Patterns Analysis of the Baekdudaegan Mountain Range (백두대간지역의 산림훼손경향 분석)

  • Lee, Dong-Kun;Song, Won-Kyong;Jeon, Seong-Woo;Sung, Hyun-Chan;Son, Dong-Yeob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.41-53
    • /
    • 2007
  • The Baekdudaegan Mountain Range is a backbone of the Korean Peninsula which carries special spiritual and sentimental signatures for Koreans as well as significant ecological values for diverse organisms. However, in spite of importance of this region, the forests of Baekdudaegan have been damaged in a variety of human activities by being used as highland vegetable grower, lumber region, grass land, and bare land, and are still undergoing destruction. The existing researches had determined the details of the damage through on-site and recent observations. Such methods cannot provide quantitative and integrated analysis therefore could not be utilized as objective data for the ecological conservation of Baekdudaegan forests. The goal of this study is to quantitatively analyze the forest damage in the Baekdudaegan preservation region through land cover categorization and change detection techniques by using satellite images, which are 1980s, and 1990s Landsat TM, and 2000s Landsat ETM+. The analysis was executed by detecting land cover changed areas from forest to others and analyzing changed areas' spatial patterns. Through the change detection analysis based on land cover classification, we found out that the deforested areas were approximately three times larger after the 1990s than from the 1980s to the 1990s. These areas were related to various topographical and spatial elements, altitude, slope, the distance form road, and water system, etc. This study has the significance as quantitative and integrated analysis about the Baekdudaegan preservation region since 1980s. These results could actually be utilized as basic data for forest conservation policies and the management of the Baekdudaegan preservation region.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Road Image Enhancement Method for Vision-based Intelligent Vehicle (비전기반 지능형 자동차를 위한 도로 주행 영상 개선 방법)

  • Kim, Seunggyu;Park, Daeyong;Choi, Yeongwoo
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.1
    • /
    • pp.51-71
    • /
    • 2014
  • This paper presents an image enhancement method in real road traffic scenes. The images captured by the camera on the car cannot keep the color constancy as illumination or weather changes. In the real environment, these problems are more worse at back light conditions and at night that make more difficult to the applications of the vision-based intelligent vehicles. Using the existing image enhancement methods without considering the position and intensity of the light source and their geometric relations the image quality can even be deteriorated. Thus, this paper presents a fast and effective method for image enhancement resembling human cognitive system which consists of 1) image preprocessing, 2) color-contrast evaluation, 3) alpha blending of over/under estimated image and preprocessed image. An input image is first preprocessed by gamma correction, and then enhanced by an Automatic Color Enhancement(ACE) method. Finally, the preprocessed image and the ACE image are blended to improve image visibility. The proposed method shows drastically enhanced results visually, and improves the performance in traffic sign detection of the vision based intelligent vehicle applications.

Development of the Weather Detection Algorithm using CCTV Images and Temperature, Humidity (CCTV 영상과 온·습도 정보를 이용한 기후검출 알고리즘 개발)

  • Park, Beung-Raul;Lim, Jong-Tea
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2007
  • This paper proposed to a detection scheme of weather information that is a part of CCTV Images Weather Detection System using CCTV images and Temperature, Humidity. The previous Partial Weather Detection System uses how to acquire weather information using images on the Road. In the system the contrast and RGB Values using clear images are gained. This information is distributed a input images to cloud, rain, snow and fog images. That is, this information is compared the snow and the fog images for acquisition more correctness information us ing difference images and binary images. Currently, We use to environment sense system, but we suggest a new Weather Detection Algorithm to detect weather information using CCTV images. Our algorithm is designed simply and systematically to detect and separate special characteristics of images from CCTV images. and using temperature & humidity in formation. This algorithm, there is more complex to implement than how to use DB with high overhead of time and space in the previous system. But our algorithm can be implement with low cost' and can be use the system in real work right away. Also, our algorithm can detect the exact information of weather with adding in formation including temperature, humidity, date, and time. At last, this paper s how the usefulness of our algorithm.

  • PDF