• Title/Summary/Keyword: road drainage

Search Result 160, Processing Time 0.025 seconds

Effects of Road Constructions on Soil Drainage from Paddy Fields

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.189-193
    • /
    • 2015
  • Bad drainage problems from paddy fields adjacent to roads are caused by higher constructed roads which change topography of paddy fields to concave topography and artificial pan to prevent road erosion when road constructions are occurred. This study investigated effects of topography changes on soils by road constructions. Soil samples were investigated by physico-chemical analyses and micromorphology analyses from representative soil profile of Sachon series and soil samples. The characteristics of Sachon series that were adjacent to roads were fewer redoximorphic features (RMF) and increase in grey layers than the original Sachon series. The characteristics of Yecheon Series were shown from Jeollanamdo - Suncheon > Chungchungnamdo - Cheonan > Gangwondo - Wonju. Mosaic speckles were shown from micromorphological analyses because of repeat of shrink and expansion by wetting and drying. The location of graying in soil clods were found from coarse stone blocks to fine stone blocks and color changes of composed particles were also found.

Analysis of Factors Influencing Landslide Occurrence along a Forest Road Near Sangsan Village, Chungju, Korea (충주시 상산마을 주변 임도 산사태의 발생 원인 분석)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.73-83
    • /
    • 2022
  • The factors influencing landslide occurrence were analyzed for six points on the upper slope and the 24 points on the lower slope along a forest road around Sangsan village in Chungju, Korea, where landslides have occurred due to heavy rainfall. In terms of physico-mechanical properties of the soil layer, the lower slope seemed to loosen owing to the higher porosity, lower unit weight, and lower friction angle compared with the upper slope. With respect to topographic characteristics, the lower slope had thicker regolith, more concave profile and plan curvatures, lower slope angles, and higher topographic wetness index values than the upper slope. Therefore, all the properties (except for the slope angle) appear to make the lower slope of the forest road more vulnerable to landslides than the upper slope. Apart from the physico-mechanical and topographic characteristics, inadequate maintenance and management of drainage facilities are also considered as further major factors influencing landslide occurrence.

Pollutant Contents with Particle Size Distribution in Bridge Road Drainage Sediment (교량도로 배수받이 퇴적물질의 입경별 오염물질 함량)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1360-1365
    • /
    • 2007
  • The purpose of this study is to present the basic data for nonpoint pollutant loads from bridge road drainage sediments using the results to analyze organic matter and heavy metals from the four bridge drainage sampling sites with sediments of different particle size ranges. The sediment sample was collected from the bridge road drainage and the masses of nine sediments fractions were obtained after drying the separated sediment in an over at $85^{\circ}C:>2,000{\mu}m$, $1,000\sim2,000{\mu}m$, $850\sim1,000{\mu}m$, $425\sim850{\mu}m$, $212\sim425{\mu}m$, $125\sim212{\mu}m$, $90\sim125{\mu}m$, $75\sim90{\mu}m$, $<75{\mu}m$. The sediment extract was analyzed water quality constituents, including chemical oxygen demand(COD), total nitrogen(T-N), total phosphorus(T-P), heavy metals and particle size distribution. The results indicate that most of particle size ranges of the bridge road sediments was $125\sim425{\mu}m$, and portion of $<75{\mu}m$ was low. But most of the pollutants are associated with the finer fractions of the load sediments. As the results of analysis, the range and average values of COD, T-N, T-P, Fe, Cu, Cr, and Pb were $177\sim198.8$ mg/kg(77.6 mg/kg), $23\sim200$ mg/kg(83 mg/kg), T-P $18\sim215$ mg/kg(129 mg/kg), and $1,508\sim5,612$ mg/kg(3,835 mg/kg), $9.2\sim69.3$ mg/kg(49 mg/kg), $19.1\sim662.2$ mg/kg(214 mg/kg), and $28.4\sim251.4$ mg/kg(114 mg/kg), respectively. The relationship between sediment size and pollutants concentration have an inverse proportion. The removal of road sediments with frequently could be reduced the significant nonpoint pollutant load, because of the bridge road sediment contains considerable micro-particles and heavy metals.

A Study on Risk Evaluation Method of Ground Subsidence around Sewer (하수관로 주변 도로함몰 위험도 평가 방법에 관한 연구)

  • Kim, Jinyoung;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.13-18
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. In particular, in the case of old sewer pipes which are attracting attention as a main cause of road subsidence, the management of sewer pipe replacement, repair and reinforcement is being performed depending on the burial year. Therefore, in this study, we tried to suggest a reliable road subsidence risk assessment method considering various sewer specifications and surrounding environment information and CCTV exploration result and GPR exploration result.

Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis (단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안)

  • Jang, Yeongsun;Kim, Dowan;Mun, Sungho;Jang, Byungkwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

Optimal Design of Drainage Pipe Considering a Distance of Storm Water Grate Inlet in Road (도로의 빗물받이 간격을 고려한 우수관거 최적설계)

  • Chang, Dong-Eil;Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.53-58
    • /
    • 2008
  • This study presented a design model optimizing a distance of inlet with drainage pipe laid under the gutter in road. When the distance of inlet changed, a basin for the gutter divided by the distance of inlet and the inflow coming into the gutter would be changed. In this case, the change of inlet distance causes the change of a diameter of drainage pipe and slope because of the change of capacity. Therefore, the optimization is needed to design the combination of them for the distance of inlet. Genetic Algorithm is used to determine the optimal combination of them. The conditions of road and the precipitation were assumed like a real and the range of inlet distance adopted $10{\sim}30\;m$ which has been introduced in domestic. This model presented the optimal distance of inlet and the combination of pipe and slope through the minimum cost. The result of the study is that the optimal distance of inlet is different from each slope of road and it can reduce about 20% of total cost for the distance of inlet.

LCA Based Environmental Load Estimation Model for Road Drainage Work Using Available Information in the Initial Design Stage (초기 설계단계의 가용정보를 활용한 도로 배수공종의 LCA기반 환경부하량 산정모델)

  • Park, Jin-Young;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and life cycle assessment (LCA) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review at the initial design stage where it is difficult to obtain such information. In this study, a construction quantity computation system based on the standard section was developed for the drainage facilities of the road and utilized in the model to calculate the environmental load. This model can estimate the environmental load by calculating the amount of resources required for LCA using only the information available at the initial design stage. To verify the validity of the model, five validation cases were applied and compared with the unit estimation model and the multiple regression analysis model. As a result, it is confirmed that the mean absolute error rate is 9.94%, which is relatively accurate and effective model in the initial design stage.

Evaluating Unsaturated Hydraulic Properties of Compacted Geomaterials in Road Foundations (I) : Laboratory Test (다져진 도로기초 재료의 불포화투수특성 평가 (I) : 실내실험)

  • Park, Seong-Wan;Sung, Yeol-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.73-82
    • /
    • 2011
  • Generally, an unsaturated condition was not considered to predict the long-term strength and drainage behaviors on compacted road foundations. However, it is logical way to consider the unsaturated condition and hysteresis behavior on road foundations like subbase and subgrade. For more quantitative analysis, rational experimental approach requires proper laboratory tool and material model, and hydraulic properties of pavement geomaterials under unsaturated conditions. In this study, therefore, laboratory data from the soil-water characteristic curve tests were used to predict suction and unsaturated permeability on pavement foundations and the results were analyzed based on the nonlinear fitting model considered. In addition to that, the unsaturated moisture capacity of each material is discussed.