• Title/Summary/Keyword: road bridge

Search Result 440, Processing Time 0.027 seconds

Dynamic analysis of wind-vehicle-bridge systems using mutually-affected aerodynamic parameters

  • Wang, Bin;Xu, You-Lin;Li, Yongle
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.191-211
    • /
    • 2015
  • Several frameworks for the dynamic analysis of wind-vehicle-bridge systems were presented in the past decade to study the safety or ride comfort of road vehicles as they pass through bridges under crosswinds. The wind loads on the vehicles were generally formed based on the aerodynamic parameters of the stationary vehicles on the ground, and the wind loads for the pure bridge decks without the effects of road vehicles. And very few studies were carried out to explore the dynamic effects of the aerodynamic interference between road vehicles and bridge decks, particularly for the moving road vehicles. In this study, the aerodynamic parameters for both the moving road vehicle and the deck considering the mutually-affected aerodynamic effects are formulized firstly. And the corresponding wind loads on the road vehicle-bridge system are obtained. Then a refined analytical framework of the WVB system incorporating the resultant wind loads, a driver model, and the road roughness in plane to fully consider the lateral motion of the road vehicle under crosswinds is proposed. It is shown that obvious lateral and yaw motions of the road vehicle occur. For the selected single road vehicle passing a long span bridge, slight effects are caused by the aerodynamic interference between the moving vehicle and deck on the dynamic responses of the system.

Vibration of vehicle-bridge coupling system with measured correlated road surface roughness

  • Han, Wanshui;Yuan, Sujing;Ma, Lin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.315-331
    • /
    • 2014
  • The present study investigated the effect of the correlation of the measured road roughness profiles corresponding to the left and right wheels of a vehicle on the vibration of a vehicle-bridge coupling system. Four sets of road roughness profiles were measured by a laser road-testing vehicle. A correlation analysis was carried out on the four roughness samples, and two samples with the strongest correlation and weakest correlation were selected for the power spectral density, autocorrelation and cross-correlation analyses. The scenario of a three-axle truck moving across a rigid-frame arch bridge was used as an example. The two selected road roughness profiles were used as inputs to the vehicle-bridge coupling system. Three different input modes were adopted in the numerical analysis: (1) using the measured road roughness profile of the left wheel for the input of both wheels in the numerical simulation; (2) using the measured road roughness profile of the right wheel for both wheels; and (3) using the measured road roughness profiles corresponding to left and right wheels for the input corresponding to the vehicle's left and right wheels, respectively. The influence of the three input modes on the vibration of the vehicle-bridge system was analyzed and compared in detail. The results show that the correlation of the road roughness profiles corresponding to left and right wheels and the selected roughness input mode both have a significant influence on the vibration of the vehicle-bridge coupling system.

Lifetime Prediction of a P.S.C Rail Road Bridge (P.S.C 철도교량의 잔존수명 예측)

  • Yang Seung-Le
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.439-443
    • /
    • 2005
  • The biggest challenge bridge agencies face is the maintenance of bridges, keeping them safe and serviceable, with limited funds. To maintain the bridges effectively, there is and urgent need to predict their remaining life from a system reliability viewpoint. In this paper, a model using lifetime functions to evaluate the overall system probability of survival of a rail road bridge is proposed. In this model, the rail load bridge is modeled as a system. Using the model, the lifetime of the rail road bridge is predicted.

Impact effect analysis for hangers of half-through arch bridge by vehicle-bridge coupling

  • Shao, Yuan;Sun, Zong-Guang;Chen, Yi-Fei;Li, Huan-Lan
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • Among the destruction instances of half-through arch bridges, the shorter hangers are more likely to be ruined. For a thorough investigation of the hanger system durability, we have studied vehicle impact effect on hangers with vehicle-bridge coupling method for a half-through concrete-filled-steel-tube arch bridge. A numerical method has been applied to simulate the variation of dynamic internal force (stress) in hangers under different vehicle speeds and road surface roughness. The characteristics and differences in impact effect among hangers with different length (position) are compared. The impact effect is further analyzed comprehensively based on the vehicle speed distribution model. Our results show that the dynamic internal force induced by moving vehicles inside the shorter hangers is significantly greater than that inside the longer ones. The largest difference of dynamic internal force among the hangers could be as high as 28%. Our results well explained a common phenomenon in several hanger damage accidents occurred in China. This work forms a basis for hanger system's fatigue analysis and service life evaluation. It also provides a reference to the design, management, maintenance, monitoring, and evaluation for this kind of bridge.

The Construction of Bridges Management System Using GSIS (GSIS를 이용한 교량관리체계(橋梁管理體系) 구축(構築))

  • Yang, In-Tae;Kim, Dong-moon;Shin, Kye-jong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.43-50
    • /
    • 1998
  • According to complexity and high level of society, the rapid and accurate information for landuse, environment and traffic etc., is required, but the information management by a drawing and a map is confronted with a complicated and sudden change of facilities such as bridge; electricities, city gases and networks. This paper is aim to build a bridge management system of road with GSIS. It operated personal computer will bring easy computing management system of bridge on road. To build this system, presented bridge management system and domestic method for bridge management of road are investigated, and also apply to bridge management system using GSIS for site and character of bridges. And with that, position and character apply to bridge management system using GSIS.

  • PDF

Bridge Road Surface Frost Prediction and Monitoring System (교량구간의 결빙 예측 및 감지 시스템)

  • Sin, Geon-Hun;Song, Young-Jun;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents a bridge road surface frost prediction and monitoring system. The node sensing hardware comprises microprocessor, temperature sensors, humidity sensors and Zigbee wireless communication. A software interface is implemented the control center to monitor and acquire the temperature and humidity data of bridge road surface. A bridge road surface frost occurs when the bridge deck temperature drops below the dew point and the freezing point. Measurement data was used for prediction of road surface frost occurrences. The actual alert is performed at least 30 minutes in advance the road surface frost. The road surface frost occurrences data are sent to nearby drivers for traffic accidents prevention purposes.

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Study about the Evaluation of Bridge Asset Valuation for Maintenance (유지관리를 위한 교량 시설물 자산 평가 방법에 대한 연구)

  • Lee, Dong Hyun;Kim, Joo Yeub;Ji, Seung-Gu;Lee, Sang Soon;Kim, Ji-won
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.13-23
    • /
    • 2012
  • PURPOSES : This study is to improve the highway management and rehabilitation efficiently by method for asset management. METHODS : Based on the literature review, The concept of this paper is to investigate the use of asset values from a Bridge management system to improvement of maintenance system more efficiently. This study is suggested for an evaluation method based on the current bridge condition by Written-down replacement cost of the assets. RESULTS : We suggests the optimization methodology of road asset valuation for budge distribution and performance measure. CONCLUSIONS : We evaluate all of national highway's bridge by the optimization methodology of road asset valuation, and suggest application methods of asset result.

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.