• Title/Summary/Keyword: rms roughness

Search Result 258, Processing Time 0.028 seconds

Dry Etching Characteristics of LiNbO3 Single Crystal for Optical Waveguide Fabrication (광도파로 제작을 위한 단결정 LiNbO3 건식 식각 특성)

  • Park, Woo-Jung;Yang, Woo-Seok;Lee, Han-Young;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.232-236
    • /
    • 2005
  • The etching characteristics of a $LiNbO_{3}$ optical waveguide structure have been investigated using neutral loop discharge plasma with the mixture of $C_{3}F_{8}$ and Ar and the bias power parameters. The etching rate and profile angle of optical waveguide with etching parameters were evaluated by scanning electron microscopy. Also, the etching RMS roughness was evaluated by atomic force microscopy. From the results of optimum etching conditions are the $C_{3}F_{8}$ gas flow ratio of 0.2 and the bias power of 300 W.

Effects of an a-C:H Anti-Reflective Coating on the Cell Efficiency of Dye-Sensitized Solar Cells (DSSCs) (수소화된 비정질 탄소 반사방지 코팅층이 염료감응형 태양전지의 효율에 미치는 영향)

  • Song, Jae-Sil;Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.281-286
    • /
    • 2019
  • Raman spectra of a-C:H thin films deposited with an unbalanced magnetron sputtering system showed that the G peak shifted to a higher wavenumber as the target power density increased and $I_D/I_G$ ratio increased from 0.902 to 1.012. Moreover, the transmittance of a-C:H films fabricated at 60 nm tended to decrease with increasing target power density; at 550 nm in the visible light region, the transmittance decreased from 69% to 58%. The rms surface roughness values of the a-C:H thin films decreased with increasing target power density, and varied from 1.11 nm to 0.71 nm. In order to achieve efficient light trapping, the light scattering at the rough interface must be enhanced. Consequently, the surface roughness of the thin film will decrease with the target power density. Further, the refractive index and reflectivity of the a-C:H thin films increased with increasing target power density; however, the Brewster angle decreased with the target power density. Hence, dye-sensitized solar cells using an a-C:H antireflective coating increased the CE, $V_{OC}$, and $J_{SC}$ by approximately 8.6%, 5.5%, and 4.5%, respectively.

Dielectric $Bi_3NbO_7$ thin film grown on flexible substrates by Nano Cluster Deposition

  • Lee, Hyun-Woo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.10-10
    • /
    • 2009
  • Transparent BNO thin films were grown on Al-doped ZnO (AZO)/Ag/AZO/polyethersulfon (PES) (abbreviated as AAAP) transparent electrodes at a low temperature by the NCD technique. The BNO films grown on the crystallized AZO/Ag/AZO (AAA) electrodes exhibit an amorphous phase with a root mean square (rms) roughness of approximately 2 nm in the range of deposition temperature. The capacitors (Pt/BNO/AAAP) with BNO films grown at $100^{\circ}C$ show a dielectric constant of 24 and dissipation factor of 8% at 100 kHz, a leakage current density of about $8{\times}10^{-6}A/cm^2$ at an applied voltage of 1.0V. The optical transmittances of the BNO/AAAP exhibited above 80% at wavelength of 550nm at all of deposition temperature. The mechanical stability of the BNO/AAA as well as AAA electrode with the PES substrates through the bending was ensured for flexible electronic device applications. The transparent BNO capacitors grown on AAAP are powerful candidate for integration with the transparent solar cells.

  • PDF

Investigation of Eco-friendly Electroless Copper Coating by Sodium-phosphinate

  • Rha, Sa-Kyun;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.264-268
    • /
    • 2015
  • Cu films were plated in an eco-friendly electroless bath (No-Formaldehyde) on Ni/screen printed Ag pattern/PET substrate. For electroless Cu plating, we used sodium-phosphinate ($NaH_2PO_2{\cdot}H_2O$) as reducing agent instead of Formaldehyde. All processes were carried out in electroless solution of pH 7 to minimize damage to the PET substrate. According to the increase of sodium-phosphinate, the deposition rate, the granule size, and rms roughness of the electroless Cu film increased and the Ni content also increased. The electroless Cu films plated using 0.280 M and 0.575 M solutions of sodium-phosphinate were made with Cu of 94 at.% and 82 at.%, respectively, with Ni and a small amount P. All electroless Cu plated films had typical FCC crystal structures, although the amount of co-deposited Ni changed according to the variation of the sodium-phosphinate contents. From these results, we concluded that a formation of higher purity Cu film without surface damage to the PET is possible by use of sodium-phosphinate at pH 7.

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

Polycrystalline silicon thin film fabricated on plastic substrates by excimer laser annealing (엑시머 레이저 어닐링을 이용하여 플라스틱 기판에 형성한 다결정 실리콘 박막의 특성)

  • 조세현;이인규;김영훈;문대규;한정인
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, we investigated the ultra-low temperature(<$150^{\circ}C$) polycrystalline silicon film on plastic substrate application using RF-magnetron sputtering and excimer laser annealing. Amorphous silicon films were deposited using Ar/He mixture gas at $120^{\circ}C$ and in-film argon concentration was less than 2%, which was measured to Rutherford Backscattering Spectrometry. At energy density 320mJ/$\textrm{cm}^2$, RMS roughness was 267$\AA$ and UV crystallinity was 62%. The grain size varies from 50nm to 100nm after excimer laser irradiation.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Characteristic Properties of TiN Thin Films Prepared by DC Magnetron Sputtering Method for Hard Coatings (Hard Coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.660-664
    • /
    • 2008
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness, chemical stability, low friction and good adhesion properties. In this study, we investigated the effect of DC power on the characteristics of TiN thin films deposited on Si and glass substrates by DC magnetron sputtering using TiN target. We made TiN films of 300 nm thickness with various DC powers. The structural properties of films are investigated by x-ray diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester. The rms roughness was measured by atomic forced microscopy (AFM). In the result, TiN films had the smooth surface and exhibited (111) directions with the increase of DC Power. Also, especially in case of 175 W DC power, TiN film exhibited the maximum hardness about 8 GPa, and the critical load near 25.

A Comparative Study on the Various Blocking Layers for Performance Improvement of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.312-316
    • /
    • 2013
  • In this study, short-circuit preventive layer (blocking layer) was deposited between conductive transparent electrode and porous $TiO_2$ film in the DSSCs. As blocking layer, we selected the metal-oxide such as $TiO_2$, $Nb_2O_5$ and ZnO. The sheet resistance with each different blocking layers were 18 ${\Omega}/sq.$ for the $TiO_2$, 10 ${\Omega}/sq.$ for the $Nb_2O_5$ and 8 ${\Omega}/sq.$ for the ZnO, while the RMS (Root Mean Square) roughness value of DSSCs were 39.61 nm for the $TiO_2$, 41.84 nm for the $Nb_2O_5$ and 36.14 nm for the ZnO respectively. From the results of photocurrent-voltage curves, a sputtered $Nb_2O_5$ blocking layer showed higher performance on 2.64% of photo-electrochemical properties. The maximum of conversion efficiency which was achieved under 1 sun irradiation by depositing the blocking layer increased up to 0.56%.

Development of {110}<110> Textured Ag Substrate for YBCO Coated Conductors ({110}<110> 집합조직을 가지는 YBCO 박막 선재용 Ag Substrate 개발)

  • 임준형;김정호;지봉기;장석헌;김규태;주진호;김찬중;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • We fabricated textured Ag substrates for YBCO coated conductor and evaluated the effects of annealing temperature on microstructural evolution, texture formation, and surface morphology. Ag ingot, as an initial specimen, was prepared by plasma arc melting(PAM). Subsequently, the ingot was cold rolled to 100 ${\mu}{\textrm}{m}$ thick tape and annealed at temperatures of 600-80$0^{\circ}C$. The texture and surface morphology of the substrate were characterized by pole-figure and atomic force microscopy(AFM) profile, respectively. It was observed that a strong {110}<110> texture was formed after annealing and its symmetry improved as annealing temperature increased. The full-width at half-maximum(FWHM) of {110}<110> pole was as sharp as 10$^{\circ}$ for the substrate annealed at 80$0^{\circ}C$. On the other hand, it was found that the thermal grooving and faceting became remarkable as annealing temperature increased : root-mean-square(RMS) roughness of the substrate annealed at 80$0^{\circ}C$ was 39.2 nm. The substrate of strong texture and smooth surface, fabricated in our study, is considered to be suitable for use as a substrate for the epitaxial deposition of superconductor film.