• Title/Summary/Keyword: rms roughness

Search Result 258, Processing Time 0.041 seconds

Fabrication and Performance Evaluation of Flat-Type Multilayer Piezoelectric Ceramic Ultrasonic Transmitter (평판형 적층 세라믹 초음파 압전 트랜스미터의 제조와 성능 평가)

  • Na, Yong-hyeon;Lee, Min-seon;Cho, Jeong-ho;Paik, Jong-hoo;Lee, Jung Woo;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • A flat-type piezoelectric ceramic ultrasonic transmitter was successfully fabricated for application in acoustic devices with cone-free diaphragms. The transmitter, possessing a center frequency of 40.6 kHz, exhibited a higher displacement characteristic for a multilayer type compared with a single layer type. Surface roughness treatment of an Al elastic diaphragm influenced a slight increase (1.1 dB) in the sound pressure level (SPL) at $10V_{rms}$ due to the enlarged surface area. The fabricated multilayer piezoelectric ceramic ultrasonic transmitter showed increasing SPL with increasing input voltage, with a maximum SPL of approximately 123.6 dB at $10V_{rms}$. This implies a doubly increased SPL density of $3.6dB/mm^3$, superior to that of a commercial open-type transmitter with a cone.

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror (기판의 표면에너지가 반사경의 산란에 미치는 영향)

  • Lee, Beom-Sik;Yu, Yeon-Serk;Lee, Jae-Cheul;Hur, Deog-Jae;Cho, Hyun-Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

Thermal Stability of SiO2 Doped Ge2Sb2Te5 for Application in Phase Change Random Access Memory

  • Ryu, Seung-Wook;Ahn, Young-Bae;Lee, Jong-Ho;Kim, Hyeong-Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.146-152
    • /
    • 2011
  • Thermal stability of $Ge_2Sb_2Te_5$ (GST) and $SiO_2$ doped GST (SGST) films for phase change random access memory applications was investigated by observing the change of surface roughness, layer density and composition of both films after isothermal annealing. After both GST and SGST films were annealed at $325^{\circ}C$ for 20 min, root mean square (RMS) surface roughness of GST was increased from 1.9 to 35.9 nm but that of SGST was almost unchanged. Layer density of GST also steeply decreased from 72.48 to 68.98 $g/cm^2$ and composition was largely varied from Ge : Sb : Te = 22.3 : 22.1 : 55.6 to 24.2 : 22.7 : 53.1, while those of SGST were almost unchanged. It was confirmed that the addition of a small amount of $SiO_2$ into GST film restricted the deterioration of physical and chemical properties of GST film, resulting in the better thermal stability after isothermal annealing.

Fluorine-based inductively coupled plasma etching of ZnO film (ZnO 박막의 fluorine-계 유도결합 플라즈마 식각)

  • Park, Jong-Cheon;Lee, Byeong-Woo;Kim, Byeong-Ik;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.230-234
    • /
    • 2011
  • High density plasma etching of ZnO film was performed in $CF_4$/Ar and $SF_6$/Ar inductively coupled plasmas. Maximum etch rates of ~1950 ${\AA}$/min and ~1400 ${\AA}$/min were obtained for $10CF_4$/5Ar and $10SF_6$/5Ar ICP discharges, respectively. The etched ZnO surfaces showed better RMS roughness values than the unetched control sample under most of the conditions examined. In the $10CF_4$/5Ar ICP discharges, very high etch selectivities were obtained for ZnO over Ni (max. 11) while Al showed etch selectivities in the range of 1.6~4.7 to ZnO.

The Effect of Slurry and Wafer Morphology on the SiC Wafer Surface Quality in CMP Process (CMP 공정에서 슬러리와 웨이퍼 형상이 SiC 웨이퍼 표면품질에 미치는 영향)

  • Park, Jong-Hwi;Yang, Woo-Sung;Jung, Jung-Young;Lee, Sang-Il;Park, Mi-Seon;Lee, Won-Jae;Kim, Jae-Yuk;Lee, Sang-Don;Kim, Ji-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.312-315
    • /
    • 2011
  • The effect of slurry composition and wafer flatness on a material removal rate (MRR) and resulting surface roughness which are evaluation parameters to determine the CMP characteristics of the on-axis 6H-SiC substrate were systematically investigated. 2-inch SiC wafers were fabricated from the ingot grown by a conventional physical vapor transport (PVT) method were used for this study. The SiC substrate after the CMP process using slurry added oxidizers into slurry consisted of KOH-based colloidal silica and nano-size diamond particle exhibited the significant MRR value and a fine surface without any surface damages. SiC wafers with high bow value after the CMP process exhibited large variation in surface roughness value compared to wafer with low bow value. The CMPprocessed SiC wafer having a low bow value of 1im was observed to result in the Root-mean-square height (RMS) value of 2.747 A and the mean height (Ra) value of 2.147 A.

Characteristics of Sputtered TiO2 Thin Films for Coating of Polymer Insulator (폴리머 애자 코팅을 위한 스퍼터링 되어진 TiO2 박막의 특성)

  • Park, Y.S.;Jung, H.S.;Park, C.M.;Park, Y.;Kim, H.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • In this work, we have fabricated the $TiO_2$ thin films on Si and glass, polymer insulator substrates as the self-cleaning coating of polymer insulator. $TiO_2$ films were deposited by RF magnetron sputtering method with $TiO_2$ ceramic target and $TiO_2$ films of 100 nm thickness were fabricated with various RF powers. We have investigated the optical and surface, and structural properties of $TiO_2$ films prepared with various RF powers. As a result, the value of the contact angle of $TiO_2$ thin film is increased with increasing RF power and the value of the rms surface roughness is increased. The transmittance is decreased with increasing RF power. These results indicate that the variation of the surface and optical properties of $TiO_2$ thin films is related to the sputtering effects by increasing RF power.

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

Verification of Surface Scattering Models and Inversion Algorithms with Measurements of Polarimetric Backscattering Coefficients of a Bare Soil Surface (토양 표면에서의 편파별 후방 산란 계수 측정을 통한 산란 모델과 Inversion 알고리즘의 검증)

  • Hong, Jin-Young;Jung, Seung-Gun;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1172-1180
    • /
    • 2006
  • The backscattering coefficients of a bare soil surface were measured using an R-band polarimetric scatterometer, which were used to verify the validities of scattering models and inversion algorithms. The soil moisture contents and the surface roughness parameters (the RMS height and correlation length) were also measured from the soil surface. The backscattering coefficients were obtained from several scattering models with these surface parameters, and the computation results were compared with the measured backscattering coefficients. The soil moisture contents of the surface were retrieved from the measured backscattering coefficients, and compared with the measured surface parameters. This paper shows how well the scattering models agree with the measurements, and also shows the inversion results.

Preparation and Characterization of IZO Thin Films grown by DC Magnetron Sputtering (DC 마그네트론 스퍼터링을 이용한 IZO 박막의 제조와 특성 연구)

  • Park Chang-Ha;Lee Hak-Jun;Kim Hyeon-Boum;Kim Dong-Ho;Lee Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.188-192
    • /
    • 2005
  • Indium zinc oxide (IZO) thin films were deposited on glass substrate by dc magnetron sputtering. The effects of oxygen flow rate and deposition temperature on electrical and optical properties of the films were investigated. With addition of small amount of oxygen gas, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about $4.8{\times}10^{-4}\Omega{\cdot}cm$. Change of structural properties according to the deposition temperature was observed with XRD, SEM, and AFM. Films deposited above $300^{\circ}C$ were found to be polycrystalline. Surface roughness of the films was increased due to the formation of grains on the surface. Electrical conductivity became deteriorated for polycrystalline IZO films. Consequently, high quality IZO films could be prepared by do sputtering with $O_{2}/Ar{\simeq}0.03$ and deposition temperature in range of $150\~200^{\circ}C$; a specific resistivity of $3.4{\times}10^{-4}{\Omega}{\cdot}cm$, an optical transmission over $90\%$ at wavelength of 550 nm, and a rms value of surface roughness about $3{\AA}$.

Effect of V/III Ratio Variation on the Properties of AlN Epilayers in HVPE (HVPE법에 의해 성장된 AlN 에피층의 V/III비에 따른 특성변화)

  • Son, Hoki;Lim, Tae-Young;Lee, Mijai;Kim, Jin-Ho;Kim, Younghee;Hwang, Jonghee;Oh, Hae-Kon;Choi, YoungJun;Lee, Hae-Yong;Kim, Hyung Sun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.732-736
    • /
    • 2013
  • AlN epilayers were grown on a c-plane sapphire substrate using hydride vapor phase epitaxy (HVPE). A series of AlN epilayers were grown at $1120^{\circ}C$ with V/III ratios 1.5, 2.5 and 3.5, and the influence of V/III ratio on their properties was investigated. As the V/III ratio was increased, the surface roughness (RMS roughness), Raman shift of $E_2$ high peaks and full-width at half-maximum (FWHM) of symmetrical (002) & asymmetrical (102) of the AlN epilayers increased. However, the intensities of the Raman $E_2$ high peaks were reduced. This indicates that the crystal quality of the grown AlN epilayers was degraded by activation of the parasitic reaction as the V/III ratio was increased. Smooth surface, stress free and high crystal quality AlN epilayers were obtained at the V/III ratio of 1.5. The crystal quality of AlNepilayers is worsened by the promotion of three-dimensional (3D) growth mode when the flow of $NH_3$ is high.