DOI QR코드

DOI QR Code

Thermal Stability of SiO2 Doped Ge2Sb2Te5 for Application in Phase Change Random Access Memory

  • Ryu, Seung-Wook (Department of Electrical Engineering, Stanford University) ;
  • Ahn, Young-Bae (Department of Materials Science and Engineering, and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Lee, Jong-Ho (Department of Materials Science and Engineering, and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Kim, Hyeong-Joon (Department of Materials Science and Engineering, and Inter-university Semiconductor Research Center, Seoul National University)
  • Received : 2011.06.25
  • Published : 2011.09.30

Abstract

Thermal stability of $Ge_2Sb_2Te_5$ (GST) and $SiO_2$ doped GST (SGST) films for phase change random access memory applications was investigated by observing the change of surface roughness, layer density and composition of both films after isothermal annealing. After both GST and SGST films were annealed at $325^{\circ}C$ for 20 min, root mean square (RMS) surface roughness of GST was increased from 1.9 to 35.9 nm but that of SGST was almost unchanged. Layer density of GST also steeply decreased from 72.48 to 68.98 $g/cm^2$ and composition was largely varied from Ge : Sb : Te = 22.3 : 22.1 : 55.6 to 24.2 : 22.7 : 53.1, while those of SGST were almost unchanged. It was confirmed that the addition of a small amount of $SiO_2$ into GST film restricted the deterioration of physical and chemical properties of GST film, resulting in the better thermal stability after isothermal annealing.

Keywords

References

  1. S. Hudgens and B. Johnson, "Overview of Phase- Change Chalcogenide Nonvolatile Memory Technology," Mater. Res. Soc. Bull. Nov., 829, 2002.
  2. S. Lai, "Current status of the phase change memory and its future," Tech. Dig. Int. Electron Devices Meet., 255, 2003.
  3. S. L. Cho, J. H. Yi, Y. H. Ha, B. J. Kuh, C. M. Lee, J. H. Park, S. D. Nam, H. Horii, B. O. Cho, K. C. Ryoo, S. O. Park, H. S. Kim, U-I. Chung, J. T. Moon, and B. I. Ryu, "Highly scalable on-axis confined cell structure for high density PRAM beyond 256 Mb," Symposium on VLSI Technology Digest of Technical Papers, 96, 2005.
  4. Y. N. Hwang, S. H. Lee, S. J. Ahn, S. Y. Lee, K. C. Ryoo, H. S. Hong, H. C. Koo, F. Yeung, J. H. Oh, H. J. Kim, W. C. Jeong, J. H. Park, H. Horri, Y. H. Ha, J. H. Yi, G. H. Koh, G. T. Jeong, H. S. Jeong and K. Kim, "Writing current reduction for highdensity phase change RAM," Tech. Dig. Int. Electron. Devices Meet., 893, 2003.
  5. Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb," Tech. Dig. Int. Electron. Devices Meet., 2006.
  6. S. M. Yoon, N. Y. Lee, S. O. Ryu, K. J. Choi, Y. S. Park, S. Y. Lee, B. G. Yu, M. J. Kang, S. Y. Choi, M. Wuttig, "Sb-Se-Based Phase-Change Memory Device With Lower Power and Higher Speed Operations," IEEE Electron Device Letters, Vol. 27, No.6, 445, 2006. https://doi.org/10.1109/LED.2006.874130
  7. Y.K Kim, K. Jeong, M.H. Cho, U. Hwang, H. S. Jeong, and K.N. Kim, "Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped $Ge_{2}Sb_{2}Te_{5}$ during phase transition," Appl. Phys. Lett., Vol.90, 171920, 2007. https://doi.org/10.1063/1.2722203
  8. N. Matsuzaki, K. Kurotsuchi, Y. Matsui, O. Tonomura, N. Yamamoto, Y. Fujisaki, N. Kitai, R. Takemura, K. Osada, S. Hanzawa, H. Moriya, T. Iwasaki, T. Kawahara, N. Takaura, M. Matsuoka, and M. Moniwa, "Oxygen-doped GeSbTe Phasechange Memory Cells Featuring 1.5-V/100-$\mu A$ Standard 0.13-$\mu m$ CMOS Operations," Tech. Dig. Int. Electron Devices Meet., 738, 2005.
  9. Y.Ling, Y.Lin, B. Qiao, Y. Lai, J. Feng, T. Tang, B. Cai, and B. Chen, "Effects of Si Doping on Phase Transition of $Ge_{2}Sb_{2}Te_{5}$ Films by in situ Resistance Measurements," Jpn. J. Appl. Phys. Part I, Vol.45, 349, 2006. https://doi.org/10.1143/JJAP.45.L349
  10. S. W. Ryu, J. H. Oh, B. J. Choi, S.-Y. Hwang, S. K. Hong, C. S. Hwang, and H. J. Kim, "$SiO_{2}$ incorporation effects in $Ge_{2}Sb_{2}Te_{5}$ films prepared by magnetron sputtering for phase change random access memory devices," Electrochem. Solid-State Lett., Vol.9, G259, 2006. https://doi.org/10.1149/1.2205120
  11. W. Czubatyj, T. Lowrey, S. Kostylev, "Current Reduction in Ovonic Memory Devices," Proceedings of the European Symposium on Phase Change and Ovonic Science, 2006.
  12. S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, and H. J. Kim, "Phase transformation behaviors of $SiO_{2}$ doped $Ge_{2}Sb_{2}Te_{5}$ films for application in phase change random access memory," Appl. Phys. Lett., Vol.92, 142110, 2008. https://doi.org/10.1063/1.2898719
  13. L. Krusin-Elbaum, C. Cabral, Jr., K. N. Chen, M. Copel, D. W. Abraham, K. B. Reuter, and S. M. Rossnagel, "Evidence for segregation of Te in $Ge_{2}Sb_{2}Te_{5}$ films: Effect on the "phase-change" stress," Appl. Phys. Lett., Vol.90, 141902, 2007. https://doi.org/10.1063/1.2719148
  14. S. W. Nam, C. K. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. B. Lee, T. Y. Lee, Y. H Khang, and K. B. Kim, "Phase separation behavior of $Ge_{2}Sb_{2}Te_{5}$ line structure during electrical stress biasing," Appl. Phys. Lett., Vol.92, 111913, 2008. https://doi.org/10.1063/1.2899967
  15. A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Lelmini, A. L. Lacaita, and R. Bez, "Reliability Study of Phase-Change Nonvolatile Memories," IEEE Trans. Device Mater. Reliab., Vol.4, 422, 2004. https://doi.org/10.1109/TDMR.2004.836724
  16. J. B. Park, G. S. Park, H. S. Baik, J. H. Lee, H. Jeong, and K. Kim, "Phase-Change Behavior of Stoichiometric $Ge_{2}Sb_{2}Te_{5}$ in Phase-Change Random Access Memory," J. Electrochem. Soc., Vol.154, H139, 2007. https://doi.org/10.1149/1.2409482
  17. 17] S. W. Ryu, H.-K. Lyeo, J. H. Lee, Y. B. Ahn, G. H. Kim, C. H. Kim, S. G. Kim, S.-H. Lee, K. Y. Kim, J. H. Kim, W. Kim, C. S. Hwang and H. J. Kim, "$SiO_{2}$ doped $Ge_{2}Sb_{2}Te_{5}$ thin films with highthermal efficiency for applications inphase change random access memory," Nanotechnology, Vol.22, 254005, 2011. https://doi.org/10.1088/0957-4484/22/25/254005
  18. T. Y. Lee, S. S. Yim, D. B. Lee, M. H. Lee, D. H. Ahn and K. B. Kim, Appl. Phys. Lett. 89 163503, 2006. https://doi.org/10.1063/1.2362981
  19. P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, "Comparison of the agglomeration behavior of thin metallic films on $SiO_{2}$," J. Vac. Sci. Technol. A, Vol.23(4), 1152, 2005. https://doi.org/10.1116/1.1861943
  20. W. K. Njoroge, H. W. Woltgens, M. Wuttig, "Density changes upon crystallization of $Ge_{2}Sb_{2.04}Te_{4.74}$ films," J. Vac. Sci. Technol. A, Vol.20 (1), 230, 2002. https://doi.org/10.1116/1.1430249
  21. Power Diffraction File, Joint Committee on Powder Diffraction Standards (JCPDS), ASTM

Cited by

  1. Effect of InP Doping on the Phase Transition of Thin GeSbTe Films vol.44, pp.8, 2015, https://doi.org/10.1007/s11664-015-3734-4