• 제목/요약/키워드: river-water ratio

검색결과 536건 처리시간 0.025초

물질순환모델을 이용한 제주항의 수질관리(II) - 제주항의 수질 특성과 오염부하량 산정 - (Water quality management of Jeiu Harbor using material cycle model(II) - Characteristics of water quality in Jeiu harbor and the estimation of pollutant loadings -)

  • 조은일;강기봉
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.299-306
    • /
    • 2003
  • The purpose of this study is to investigate the characteristics of water quality in Jeju harbor and to estimate pollutant loadings discharged into Jeju Harbor. To know characteristics of water quality in Jeju harbor, and pollutant loadings of Sanzi river, we have investigated from August, 2000 to May, 2001. The results showed that the concentrations of COD, DIN and DIP were in the range of 1.00∼4.85 mg/L (mean 2.15 mg/L), 2.14∼74.0 $\mu\textrm{g}$-at/L(mean 12.20 $\mu\textrm{g}$-at/L) and 0.52∼4.00 $\mu\textrm{g}$-at/L(mean 1.18 $\mu\textrm{g}$-at/L), respectively. These values were under III class of seawater quality criteria. The ratio of nitrogen to phosphorus was lower than 16 except for Station 1 in Jeju harbor. Therefore, nitrogen was playing an important role in phytoplankton growth as limiting factor in Jeju harbor. The mean values of eutrophication index were exceeding 1, which was the eutrophication criteria. The results of estimating pollutant loadings at Sanzi river are 0.30 ton/day for COD, 300 kg/day for DIN and 18.0 kg/day for DIP, respectively.

낙동강 모래의 반복응력이력에 의한 거동 (Behaviour of Nak-dong River Sand on Cyclic Stress History)

  • 김영수;박명렬;김병탁;이상복
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성 (Properties of High Strength Concrete Using Fly Ash and Crushed Sand)

  • 이봉학;김동호;전인구
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

지형공간정보를 이용한 임하호 수변구역 토사유실 분석 (The Analysis of Soil Erosion in Water-pollutant Buffering Zone of Imha reservoir using Geo-Spatial Data)

  • 이근상;황의호;박진혁;채효석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.908-912
    • /
    • 2006
  • 임하호 유역은 지질 및 지형이 토사유실에 취약한 구조를 가지고 있어 강우발생시 많은 토사가 호소로 유입되어 고탁수의 원인이 되고 있다. 특히 임하호유역의 농경지가 주로 하천주변에 분포하고 있어 강우시 토사유실로 인한 탁수발생이 큰 지역이다. 따라서, 탁수저감을 위한 수변구역의 체계적인 관리와 대책 마련을 위해서는 수변구역에서 발생하는 토사유실량의 영향을 평가하는 것이 중요하다. 본 연구에서는 GIS 기반 RUSLE 모형을 선정하여 수변구역에서의 토사유실 비율을 평가한 결과 약 12.23%로서 임하호 전체유역과의 면적비율(9.95%) 보다 높게 나타남을 알 수 있었다. 이러한 결과는 수변구역 주변의 농경지비율(27.24%)이 전체유역에 대한 농경지비율(14.96%) 보다 높은 특성이 반영된 것으로 해석된다. 또한 소유역별 분석결과를 볼 때 수변구역중 대곡천 유역이 가장 높은 토사유실량 분포를 나타냈으며, 반변천_10 그리고 서시천 순서로 나타났다.

  • PDF

한강수계분지내 하천수의 지구화학적 특성 (The Geochemical Characteristics of the River Water in the Han River Drainage Basin)

  • 서혜영;김규한
    • 대한지하수환경학회지
    • /
    • 제4권3호
    • /
    • pp.130-143
    • /
    • 1997
  • 한강 수계 분지 내의 하천수(지표수)와 서울 지역 지하수의 화학적 특성 규명과 용존 이온종의 기원을 연구하기 위해 1996년 3월-4월 동안 하천수 시료 60개에 대하여, pH, TDS등과 용존이온의 화학분석을 실시하였다. 남한강과 북한강 하천수의 화학 성분은 주로 수계 분지 지역에 분포하는 암석에 의해 영향을 받고 있으며, 한강본류의 하천수는 인위적인 오염에 의한 영향이 크게 나타나고 있다. 즉, 남한강은 상류 지역에 분포하는 탄산염암, 탄광 및 금속 광산 폐수 등에서 용출된 $Ca^{2+}$, $Mg^{2+}$, ${HCO_3}^-$, ${SO_4}^{2-}$ 등이 현저하며 북한강은 화강암질암의 풍화 산물인 $K^{+}$, $Na^{+}$ $Ca^{2+}$등의 이온종이 특징적이다. 한편 양수리에서 상기2개 하천이 합류하여 서울 도심을 지나는 한강 본류는 ${SO_4}^{2-}$, ${NO_3}^{-}$ ${PO_4}^{2-}$, $CL^-$ 등 생활 하수 오염의 영향이 현저하게 나타나고 있다. 한강 본류로 유입되는 서울 지역의 왕숙천, 탄천, 중랑천, 안양천의 4의 지천은 $NO_2$, $CL^-$, ${PO_4}^{3-}$, ${SO_4}^{2-}$, Mn 등 인위적 인 오염 현상이 크게 나타나고 있다. 한강 하천수의 화학 성분의 군집, 요인 및 회귀 분석 결과, 전체 자료 분산은 오염 인자에 의한 분산이 약 79%, 지질과의 물-암석 반응에 의한 분산이 약 7% 이다. 남한강과 북한강의 합류 지점에서의 C $l^{-}$ 에 대한 혼합 비율은 약 60 : 40이다. 1981년 분석 자료와 1996년 자료의 비교에서 암석 풍화에 의한 1차적 용존 성분인 $Ca^{2+}$, $Mg^{2+}$, ${HCO_3}^-$ 등은 변화가 적으나 $Na^{+}$, ${NO_3}^{-}$, ${PO_4}^{3-}$, ${SO_4}^{2-}$ 등 인위적 오염원의 성분은 크게 증가하는 경향이 있다.

  • PDF

투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구 (Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향 (Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete)

  • 박응모;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

하류 유량자료를 이용한 상류유역의 미계측 유출량 추정 (Estimation of Upstream Ungauged Watershed Streamflow using Downstream Discharge Data)

  • 정영훈;정충길;정성원;박종윤;김성준
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.169-176
    • /
    • 2012
  • This study describes the estimation of upstream ungauged watershed streamflow using downstream discharge data. For downstream Dongchon (DC) and upstream Kumho (KH) water level stations in Kumho river basin ($2,087.9km^2$), three methods of Soil and Water Assessment Tool (SWAT) modeling, drainage-area ratio method and regional regression equation were evaluated. The SWAT was calibrated at DC with the determination coefficient ($R^2$) of 0.70 and validated at KH with $R^2$ of 0.60. The drainage-area ratio method showed $R^2$ of 0.93. For the regional regression, the watershed area, average slope, and stream length were used as variables. Using the derived equation at DC, the KH could estimate the flow with maximum 41.2 % error for the observed streamflow.

유역면적과 강우특성변화에 따른 CHICAGO모형 매개변수의 민감도분석에 관한 연구 (A Study on the Sensitivity Analysis of CHICAGO Model Parameters due to Watershed Area and Rainfall Characteristics)

  • 서규우;송일준
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.74-81
    • /
    • 1999
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as CHICAGO Model was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters(CI, CP, CS) which are included in this model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis. Finally, applied model was proposed based on understanding of work types and established urban runoff models which can simulate well for areal development patterns and urban river basin.

  • PDF

도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법 (Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types)

  • 김영란;황성환
    • 상하수도학회지
    • /
    • 제35권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.