• Title/Summary/Keyword: river environment

Search Result 3,076, Processing Time 0.026 seconds

Study on Habitat Selection of Odontobutis interrupta using PIT Telemetry (PIT telemetry를 이용한 얼록동사리의 서식지 선택 연구)

  • Jun-Wan Kim;Kyu-Jin Kim;Beom-Myeong Choi;Ju-Duk Yoon;Min-Ho Jang
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.294-304
    • /
    • 2022
  • This study carried out from March 2021 to October 2021 in the upper part (St. 1) and middle part (St. 2) section of Yongsu stream, a branch of the Geum river, using PIT telemetry to understand the movement patterns and habitat characteristics of Odontobutis interrupta, a Korean endemic species. O. interrupta collection was used kick net (5×5 mm) and fish trap (5×5 mm). After collecting fish, PIT tag insertion was performed immediately in the site. Reader (HPR Plus Reader, biomark, USA) and portable Antenna (BP Plus Portable Antenna, biomark, USA) were used for detection of fish to monitoring the tagged O. interrupta. As a result of PIT telemetry applied to 70 individuals, mean movement distance was 36.5 (SE, ±6.6) m. There was a significant difference between total length and movement distance (P≤0.05). O. interrupta was mainly identified in average water depth, 36.2±1.9 cm, average water velocity, 0.03±0.07 m s-1 and average distance from watershed, 4.4±0.3 m. Extent of rock used for habitat was varied from 32 to 4,000 cm2. There was no statistical difference between the area of the first selected rock and the area of the after selected rock (P>0.05). but there was significant difference between total length and the area of the rock except for detection before 24 hours (P<0.01). Therefore, to restore the habitat, it is considered necessary to create various substrate structures by providing various habitat environments (water depth, flow rate, stone, etc.) for each individual size.

Flood Disaster Prediction and Prevention through Hybrid BigData Analysis (하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방)

  • Ki-Yeol Eom;Jai-Hyun Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • Recently, not only in Korea but also around the world, we have been experiencing constant disasters such as typhoons, wildfires, and heavy rains. The property damage caused by typhoons and heavy rain in South Korea alone has exceeded 1 trillion won. These disasters have resulted in significant loss of life and property damage, and the recovery process will also take a considerable amount of time. In addition, the government's contingency funds are insufficient for the current situation. To prevent and effectively respond to these issues, it is necessary to collect and analyze accurate data in real-time. However, delays and data loss can occur depending on the environment where the sensors are located, the status of the communication network, and the receiving servers. In this paper, we propose a two-stage hybrid situation analysis and prediction algorithm that can accurately analyze even in such communication network conditions. In the first step, data on river and stream levels are collected, filtered, and refined from diverse sensors of different types and stored in a bigdata. An AI rule-based inference algorithm is applied to analyze the crisis alert levels. If the rainfall exceeds a certain threshold, but it remains below the desired level of interest, the second step of deep learning image analysis is performed to determine the final crisis alert level.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

The Quality Control Method in the Laboratory Analysis of Aquatic Ecosystem Health Monitoring and Assessment: Permanent Mounting Slides Tool Development Using Benthic Attached Diatoms. (수생태계 건강성 조사·평가를 위한 실내분석 정도관리 방법: 부착돌말류 영구표본 분석도구 개발)

  • Jae-Ki Shin;Nan-Young Kim;Yongeun Park;Kyung-Lak Lee;Baik-Ho Kim;Yong-Jae Kim;Han-Soon Kim;Jung Ho Lee;Hak Young Lee;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.196-206
    • /
    • 2023
  • Benthic attached diatoms (BADs), a major primary producer in lotic stream and river ecosystems are micro-sized organisms and require a highly magnified microscopic technique in the observation work. Thus, it is often not easy to ensure accuracy and precision in both qualitative and quantitative analyses. This study proposed a new technique applicable to improve quality control of aquatic ecosystem monitoring and assessment using BADs. In order to meet the purpose of quality control, we developed a permanent mounting slide technique which can be used for both qualitative and quantitative analyses simultaneously. We designed specimens with the combination of grid on both cover and slide glasses and compared their efficiency. As a result of observation and counting of BADs, the slide glass designed with the color-lined grid showed the highest efficiency compared to other test conditions. We expect that the method developed in this study could be effectively used to analyze BADs and contributed to improve the quality control in aquatic ecosystem health monitoring and assessment.

Annual Changes in the Distribution of Bolboschoenus planiculmis in the Eulsuk-Island, Nakdong River Estuary (낙동강하구 을숙도 새섬매자기(Bolboschoenus planiculmis) 군락 변화 연구)

  • Hee Sun Park;Gea-Jae Joo;Wonho Lee;Ji Yoon Kim;Gu-Yeon Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.259-267
    • /
    • 2023
  • This study analyzed the relationship between distribution of Bolboschoenus planiculmis which is main food source of swans (national monument species) with environmental factors, discharge, rainfall, and salinity in Eulsuk-do from 2020 to 2023. The distribution area of B. planiculmis in Eulsuk tidal flat was 103,672m2 in 2020, 95,240 m2 in 2021, 88,163 m2 in 2022, and 110,879 m2 in 2023, and represents a sharp decrease compared to the 400,925 m2 area recorded in 2004. From 2020 to 2023, the growth densities of B. planiculmis were 243.6±12.5 m-2, 135.45±7.38 m-2, 51.10±2.54 m-2, and 238.20±16.36 m-2, respectively, and the biomass was 199.89±28.01 gDW m-2, 18.57±5.12 gDW m-2, 6.55±1.12 gDW m-2, and 153.53±25.43 gDW m-2 in 2020, 2023, 2021, and 2022, respectively. Based on discharge during May~July, which affects plant growth, the left gate discharge of the estuary barrage from 2020 to 2023 was 62,322 m3 sec-1, 33,329 m3 sec-1, 6,810 m3 sec-1, and 93,641 m3 sec-1, respectively; rainfall was 1,136 mm, 799 mm, 297 mm, and 993 mm, respectively; and average salinity was 14.7±9.4 psu, 21.1±4.7 psu, 26.1±2.7 psu, and 14.5±11.1 psu, respectively. In 2022, cumulative rainfall (978 mm, about 70% of the 30-year average) and discharge (43,226 m3 sec-1) decreased sharply, resulting in the highest mean salinity (25.46 psu), and the distribution area, density, and biomass of the B. planiculmis decreased sharply. In 2023, there was a rise in discharge with an increase in rainfall, leading to a decrease in salinity. Consequently, this environmental change facilitated the recovery of B. planiculmis growth.

Research on water quality and flow rate measurement by applying GPS electronic Floater standard experimental method when water environmental chemical accidents occur (수환경 화학사고 발생시 GPS 전자부자 표준실험법 적용을 통한 수질-수리 측정에 대한 연구)

  • Lee, Chang Hyun;Nam, Su Han;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.845-853
    • /
    • 2023
  • Recently, along with the increase in chemical accidents, the number of accidents-related disasters has been increasing continuously since 2012, and when looking at the hydrogen fluoride incident which is a representative example of domestic chemical incidents, there is insufficient technology applicable to the incident site. The result was that the damage spread. Therefore, in this paper, we will adapt the water pollution accident response system to a location-based approach, and introduce a measurement method for alternative index tracking using a GPS electronic floater of a location-based index measurement method for real-time response in the water environment when a chemical incident occurs. The research target area is Gumi City, which is the area where the hydrogen fluoride incident occurred, and Gamcheon is selected, and alternative tracking using GPS electronic floater is conducted in the corresponding target area through water quality and flow measurement. As a result, it is possible to measure water quality and flow at the same time in tracker experiments using GPS electronic floater based on the research results, it is believed that using GPS electronic floater will be of great help in disaster response systems for spill incidents in the river.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do (충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구)

  • Sangmin Oh;Suk-Hee Yoon;Jaeseon Park;Yu-Jung Heo;Soohyung Lee;Eun-Jin Yoo;Min-Seob Kim
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.111-128
    • /
    • 2023
  • Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

Spawning Site Characters in the Natural Environment of Bull-head Torrent Catfish, Ligbagrus obesus(Siluriformes: Amblycipitidae) in the Gosan Stream, Mangyeong River Water System, Korea (만경강 수계 고산천에 서식하는 퉁사리 Liobagrus obesus의 자연산란장 특성)

  • Kim, Hyeong-Su;Yang, Hyun;Hong, Yang-Ki
    • Korean Journal of Ichthyology
    • /
    • v.24 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • The spawning site characters in the natural environment of bull-head torrent catfish, Liobagrus obesus, were investigated at the part of the Gosan stream in Korea from April to October 2010 and June 2011. The sex ratio of female to male was 1 : 1.02. Spawning season was from June to July with water temperature in approximately $23^{\circ}C$. The spawning sites were covered by the boulder used upper plate and were composed of gravel and sand. One male lies with the egg mass and guards the developing embryos in the hollow below the boulder. The environmental conditions of the spawning sites were $61.4{\pm}11.97$ (50~85) cm in depth, 0.58${\pm}0.067$ (0.48~0.72) m/sec in surface water velocity, $0.46{\pm}0.098$ (0.27~0.61) m/sec in middle water velocity, $0.27{\pm}0.083$ (0.14~0.41) m/sec in bottom water velocity. The boulder width as spawning sites was $26.2{\pm}5.32$ (20~38) cm in long axis, $20.5{\pm}2.97$ (16~25) cm in short axis and $11.1{\pm}4.02$ (5~19) cm in height. The hollow underneath the boulder was $9.8{\pm}2.32$ (6~14) cm in diameter and $2.8{\pm}1.10$ (1.5~5) cm in depth. The average number of eggs in ovary was $124{\pm}27.7$ (92~180). The matured egg size was $3.40{\pm}0.078$ (3.21~3.56) mm. The average number of spawning eggs in the spawning site was $99{\pm}12.9$ (81~122).