• 제목/요약/키워드: river discharge (water quantity) and water quality

검색결과 19건 처리시간 0.02초

유량변동에 따른 소양강유역 수질의 통계학적 해석 (A Stochastic Analysis of the Water Quality on the Basin of Soyang River with Discharge Variation)

  • 최한규;백경원;최용묵;최진우
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.233-240
    • /
    • 2001
  • This research was conducted with the aim of efficiently managing large scale of rivers such like Songyang-river through predicting water quality change with analyzing the characteristics of the flowing in nutrients and pollutants. The main result will be used as basic data for effectively operating reservoirs through controling water quality and quantity. The relationship between quantity of flow and water quality was analyzed and pollution loading into the basin was estimated. Three areas of Soyang-river upstream and one area of Suip-cheon in Yanggu-gun were selected as research sites. Flow and water quality were measured simultaneously. The relation between quantity of discharge and pollution concentration and between quantity of discharge and pollution loading were analyzed by statistical method, respectively. We provided a rating curve through measuring quantity of discharge(collecting quantity of discharge) and pollutograph and pollution loading curve through water quality data. Also, we analyzed the correlation between quantity of discharge per unit area and pollution loading per unit area in each basin. As resurt of this research, Buk-cheon spot revealed an excellent first grade water quality for the items including $BOD_5$, DO, and SS. The correlation coefficient between Buk-cheon spot's quantity of discharge and pollution loading was 0.896~0.996, showing the validity of analysis applying correlation curve formula of quantity of discharge and pollution loading in the same spot. Also, pollution loading per unit area of the items including $BOD_5$, COD, DO, SS, T-N, T-P increased as the area of basins get increased following the sequence of Buk-cheon, Suip-cheon, Naelin-cheon spots.

  • PDF

낙동강 수질관리 방안-하수분리 무방류시스템의 개념적 고찰 (A Conceptual Zero-Discharge System for Water Quality Management of the Nak-Dong River)

  • 박희경;현인환;박중현
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.40-49
    • /
    • 1997
  • From water management point of view, the industrialization that we have achieved in the last decades brought out two major changes: water shortage and water quality deterioration. They are getting the big obstacles we must overcome to continuously pursue industrialization for further development in the next century. Many plans using dams and advanced treatment methods have been developed for control of quantity and quality, respectively. In this paper, an alternative is conceptually reviewed which is much different from the plans in regard that the alternative looks at system itself. It is based on an interceptor system coupling with a concept of zero-discharge. This system allows no discharge of wastewaters from point-sources to waterbodies which are very sensitive in terms of water quality. In addition reuse of treated effluents is emphasized to a maximum extent. The application of the system to the Nak-Dong river basin indicated that an interceptor system will need from the middle reaches of the basin where industrialization gets heavier. Since wastewaters are not directly discharged to the river, water quality of the down stream will improve. Treated effluents will be able to be reused at a number of industrial complex which currently get water from the Nak-Dong river. This reuse will help alleviate water shortage. The biggest problem anticipated is cost for building and operating such system. A cost-sharing plan among the beneficiaries is considered. Further research is suggested focusing on detailed engineering and technical matters for potential implementation.

  • PDF

용담댐 관리계획이 대청댐 저수량에 미치는 영향 (Impacts of Yongdam dam managment Plan on Daechung dam Storage)

  • 박정남;이재면;김태얼
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.550-555
    • /
    • 1999
  • yongdam multipurpose is under construction to divert a part fo Geum riverlfow to Mankyung watershed and to supply the domestic water to the Chunju region and produce the hydro-electricity. Generally construction of dam by the method of inther-region water transfer affects the quantity and quality of water inthe down streams and reservoirs. The impact of operation plan of Yondgam dam on the quantity and quality of water in the Guem river and Daechung dam was investigated .It was recommended that the discharge of water transfer from one watershed to another should be minimized as much as possible.

  • PDF

2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측 (Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model)

  • 김재동;김지훈;김영도;송창근;서일원
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

도시유역에서의 유출 및 수질해석 모형 (Urban Runoff and Water Quality Models)

  • 이종태
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.709-725
    • /
    • 1998
  • 도시하천의 유출 및 수질특성을 홍제천 시험유역에서의 관측자료에 의하여 분석하였다. 시험유역의 수질은 건기시차집 관로에 의한 하수의 차단으로 비교적 양호한 수질을 보이는 반면, 이로 인하여 동기의 약 3-4개월동안에는 건천화의 현상을 보였다. 한편, 우기시에는 합류식 하수계통으로부터의 급격한 비점원 오염부하량의 증대를 보였다. 도시유출 및 수질을 해석하는 모형, SWMM, ILLUDAS, STORM, HEC-1 등을 적용하고 그 결과를 비교분석하였다. 또한, 시험유역에 대한 유출·수질상관식을 도출하고 그 적용성을 검토하였다. 검토 모형들은 전반적으로 양호한 적용성을 보였으며, 유출과 수질해석의 양면에서 SWMM이 검토모형중에서 가장 우수한 것으로 판단된다. 또한, 실측자료에 근거한 유출·수질상관 모형을 도출하였으며 우기시의 오탁부하량의 근사산정에 효과적인 것으로 판단되었으나, 유량이 관측 자료의 범위를 벗어나면 그 정확도가 크게 떨어졌다. 이 모형은 대상 유역의 관측자료 확충으로 보완되어 나가야 할 것이다. 한편 현재 실무에서 널리 사용되는 HEC-1도 도시유역에서 경제적으로 활용될 수 있을 것으로 판단된다.

  • PDF

부산 수영구 지하철 터널에서의 지하수 유출이 주변 지하수에 미치는 영향 (The Influence of the Surrounding Groundwater by Groundwater Discharge from the Subway Tunnel at Suyeong District, Busan City)

  • 정상용;김태형;박남식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권2호
    • /
    • pp.28-36
    • /
    • 2012
  • This study carried out several kinds of investigations such as geology, hydrogeology, groundwater level and quality, surface-water quality, and the quantity and quality of groundwater discharge from the subway to identify the causes of groundwater contamination around the subway tunnel at Suyeong District in Busan City. Geostatistical analyses were also conducted to understand the characteristics of groundwater level and quality distributions. There are Kwanganri Beach and Suyeong River in the study area, which are basically influenced by seawater. The total quantities of groundwater utilization and groundwater discharge from the subway tunnel in Suyeong District are 2,282,000 $m^3$/year, which is 2.4 times larger than the sustainable development yield of groundwater. The lowest groundwater level around the subway tunnel is about 32 m below the mean sea-level. The large drawdown of groundwater led to the inflow of seawater and salinized river water toward the subway tunnel, and therefore the quality of groundwater didn't satisfy the criteria of potable, domestic, agricultural and industrial uses. Distribution maps of groundwater level and qualities produced by kriging were very useful for determining the causes of groundwater contamination in the study area. The distribution maps of electrical conductivity, chloride and sulfate showed the extent of seawater intrusion and the forceful infiltration of the salinized Suyeong River. This study revealed that seawater and salinized river water infiltrated into the inland groundwater and contaminated the groundwater around the subway tunnel, because the groundwater level was seriously drawdowned by groundwater discharge from the subway tunnel. The countermeasure for the minimization of groundwater discharge from the subway tunnel is necessary to prevent the groundwater obstacles such as groundwater depletion, groundwater-quality deterioration, and land subsidence.

하천취수가 하천흐름 및 수질에 미치는 영향 (Influence of Water Supply Withdrawal on the River Flow and Water Quality)

  • 서일원;송창근
    • 대한토목학회논문집
    • /
    • 제31권4B호
    • /
    • pp.343-352
    • /
    • 2011
  • 본 연구에서는 상류단 경계조건으로 입력되는 본류 유량에 생성과 소멸로 작용하는 지천유입량과 취수량을 포함하여 취수장에서의 취수가 하천흐름 및 수질에 미치는 영향을 살펴보기 위하여 팔당댐 직하류부터 잠실수중보 구간에 RMA-2 모형과 RMA-4 모형을 적용하였다. 수치모의 결과, 잠실수중보 상류에 위치해 있는 5개 취수장에서의 취수는 해당 하천 구간의 유량을 변화시키게 되며, 이는 하천의 수위, 유속 등 수리학적 인자를 변화시키는 것으로 밝혀졌다. 이러한 취수량 반영에 따른 수위 및 유속 변화는 해당 하천 구간의 수질의 변화를 초래하는 것으로 나타났다. 취수장에서 빠져나가는 유량을 포함하여 모의한 경우, 구의, 자양, 풍납취수장 부근에서 취수에 의한 유량 손실로 인하여 유속구조가 심하게 교란되었으며, 취수를 고려하지 않은 경우에 비해 유속은 평균 25% 낮게, 수위는 1.5 cm 높게 나타났다. 취수를 고려하지 않은 경우 전 구간에 걸쳐 농도분포가 평행하게 나타났으나, 취수의 영향을 고려한 경우 구의, 암사 및 자양 취수장 부근에서의 농도분포가 크게 변화함을 확인할 수 있었다. 또한 취수를 고려한 경우 취수에 의한 유랑소멸로 하류구간에서 취수를 고려하지 않은 경우에 비해 BOD 농도가 높게 나타났다. 따라서 자연하천의 동수역학적 흐름 및 오염물질 혼합거동을 보다 정확히 해석하기 위해서는 지천 합류량 뿐만 아니라 취수장으로부터 유출되어 빠져나가는 취수량을 동시에 고려해야 하는 것으로 판단된다.

섬진강댐 상류 유역의 강우시 비점오염물질 유출 특성 (Characteristics of Non-point Pollutant Discharge from Upper Watershed of Seomjin Dam during Rainy Season)

  • 곽동희;유승준;김지훈;임익현;권지영;정팔진
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.39-48
    • /
    • 2008
  • This study was carried out to investigate the characteristics of the pollutant discharge from non-point source and to estimate the unit loads of the pollutant discharge from the upper watershed of Seomjin Dam during rainy season. The upper watershed of Seomjin Dam is located in the middle of Jeonbuk province is formed two tributaries mainly. A sub-branch stream of those tributaries is Imsil stream of which flow rate is about 13% of the main stream of Seomjin reservoir normally. On the basis of measurement result in this study, the water quality of Imsil stream was fluctuated highly and the quantity of measured pollutant discharge was higher than the value calculated with the proportion of flow rate during dry season. On the contrary, during rainy season the mean values of flow rate and water quality were higher than the quartile according to the statistical analysis. That means rainfall can influence strongly on the water quality of the upper watershed of Seomjin reservoir. Among the several criteria of water quality, SS discharge was most sensitive to the flow rate variation of stream, which was fluctuated in proportion of rainfall, basically. It was evaluated the event mean concentration (EMC) of non-point source pollutants depending on rainfall events as well. Though the pollutant discharge unit of Imsil stream was lower than the main stream of Seomjin reservoir, the EMC value of Imsil stream was higher than the main stream of Seomjin reservoir.

강릉 신리천의 수량 수질 분석 및 오염부하량 추정 (Water Ouantity/Quality Analysis and Pollutants Load Estimation in Sillicheon River, Jumunjin, Gangneung)

  • 조홍연;김창일;이달수
    • 한국해안해양공학회지
    • /
    • 제16권4
    • /
    • pp.196-205
    • /
    • 2004
  • 강릉 주문진항 입구로 유입되는 신리천 유역의 수질을 2003년 4월 2일부터 10월 29일까지 2주 간격으로 관측하였으며, 미계측 유역의 유량추정에 이용되는 TANK 모형을 이용하여 신리천의 하천수량을 일별로 산정하였다. 관측된 수질자료의 지점별$.$시기별 변화양상을 분석하였으며, 유역의 강수량과 하천수량과의 상관관계를 분석하였다. 분석결과, 신리하교 지점의 BOD 농도와 강우량과는 상관계수 0.75로 높은 상관성을 보였으며, SS농도와 2일 선행강우량과는 상관계수 0.36으로 약한 상관성을 보였다. COD, TN, TP 항목의 농도는 강수량, 하천유량과는 전혀 상관성이 없는 것으로 파악되었다. 따라서, 본 연구에서 제시한 BOD 항목의 유역 오염부하량은 신뢰할 만한 수준이며, SS 항목의 오염부하량도 정확도가 다소 감소하지만 전체적인 오염부하량 변화양상은 반영하는 것으로 평가되었다. 반면, COD, TN, TP 항목의 유역 오염부하량 추정결과는 평균 오염부하량 수치정도로 활용 할 수 있으나, 시기적인 변화양상을 파악하기 위해서는 인위적인 요소 및 토지이용 양상 등을 고려한 연구가 필요하다.

영일만 유입오염부하량과 수질의 시ㆍ공간적 변동특성(I) - 하천유량과 유입오염부하량의 계절변동 - (Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bau(I) - Seasonal Variation of River Discharge and Inflowing Pollutant Loads -)

  • 윤한삼;이인철;류청로
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.23-30
    • /
    • 2003
  • This study investigates the seasonal variation and spatial distribution characteristics of pollutant load, as executing the quality valuation of pollutant load inflowing into Yeong-il Bay from on-land including the Hyeong-san River. Annual total pollutant generating rate from Yeong-il Bay region are 202ton-BOD/day, 620ton-SS/day, 42ton-TN/day, and 16ton-TP/day, respectively. Particularly, the generating ration of the pollutant loads from the Hyeong-san River is greater than that of any other watershed of the Yeong-il Bay, of which BOd is about 78.2%, SS 88.5%, T-N 62.5%, T-P 73.1%, As calculating Tank model with input value of daily precipitation and evaporation of 2001 year in drainage basin of the Hyeong-san River, the estimated result of the annual river discharge effluence from this river is 830106㎥, As a result to estimating annual effluence rate outflowing at the rivers from each drainage basin. annual inflow pollutant rates are 10,633ton-BOD/year, 19,302ton-SS/year, 15,369ton-TN/year, 305ton-TP/year, respectively. The population congestion region of the Pohang-city is a greater source of pollutant loads than the Neang-Chun region with wide drainage area. Therefore, the quantity of TN inflowing into Yeong-il Bay is much more than T-P. The accumulation of pollutant load effluenced from on-land will happen at the inner coast region of Yeon-il Bay. Finally, We would make a prediction that the water quality will take a bad turn.