• Title/Summary/Keyword: river basin

Search Result 2,369, Processing Time 0.035 seconds

Unrecorded Alien Plant in South Korea: Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven (미기록 침입외래종: 꽃여뀌바늘)

  • Kim, Hye-Won;Son, Dong Chan;Park, Soo Hyun;Jang, Chang-Seok;Sun, Eun-Mi;Jo, Hyeryun;Yun, Seok Min;Chang, Kae Sun
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.201-206
    • /
    • 2019
  • Alien invasive species are introduced with or without intent and spreading all over Korea. They are known to have negative effects on biodiversity such as economic and environmental damage and causing decrease or loss of native species. The habitats like wetland, reservoir and riverside are especially in danger of being invaded by alien species due to stress and disturbance. Therefore, Korea National Arboretum is steadily working on research and studies on managing alien invasive species. This research aims to collect basic information of Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven which was found near riverside in Suwon-si and is concerned to become an invasive alien species. We expect the description, diagram and pictures of this taxon will be helpful for early detection and effective management.

Evaluation of InVEST habitat quality model using aquatic ecosystem health data (수생태계 건강성 자료를 이용한 InVEST habitat quality 모델 적용성 평가)

  • Lee, Jiwan;Woo, Soyoung;Kim, Yongwon;Park, Jongyoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.657-666
    • /
    • 2021
  • Ecosystem biodiversity is rapidly being lost due to changes in habitat, fragmentation of habitat, climate change, and land use changes by human activities. Recently, attempts have been made to approach the watershed management level to secure the health of the watershed, but studies on how to approach biodiversity and habitat management are still in lack. The purpose of this study is to evaluate the habitat quality of Geum river basin using Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) habitat quality model. The results of habitat quality was verified to eco-natural map and ecological watershed health evaluation results. The habitat quality of watershed was evaluated from 0 to 0.86 and the results showed that habitat quality was higher in upstream than downstream. Compared the habitat quality value in each eco-natural grade, the average habitat quality of 1st, 2nd and 3rd grades were 0.80, 0.76 and 0.71 respectively. The results of the correlation analysis with ecological watershed health data, the coefficient of determination (R2) was 0.58, and the person coefficient was 0.76. The results of this study may be used as foundation data to support habitat protection and implementation of long-term biodiversity-related policies.

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보시스템 설계)

  • Yun, Jin I.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.25-48
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.

  • PDF

Analysis of the 2015 drought for Geum river basin and northwesten area in Chungnam (2015년 금강수계 및 충남 서북부 지역의 가뭄상황 분석)

  • Kim, Jeong Yup;Sung, Jang Hyun;Choi, Yong Joon;Park, Sang Geun;Kim, Yang Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.245-245
    • /
    • 2016
  • 지난 해 금강수계 강수량은 835.0mm로 평년('81~'10)의 64.3%, 삽교천수계는 765.1mm로 평년의 61.1% 정도로 매우 적었다. 특히 작년 6월부터 9월까지의 금강수계 강수량은 343.1mm로 평년 894.8mm의 38.3%, 삽교천수계 강수량은 301.1mm로 평년 860.6mm의 35.0% 수준으로 일반적으로 연간 강수량의 2/3가 여름철에 집중되는 현상과는 매우 다른 양상을 보이며 충남 서북부지역 8개 시 군은 최악의 가뭄을 겪었다. 따라서 작년 가을에는 전국적으로 가뭄이 만연한 가운데에서도 충남 서북부 8개 시 군에는 8월말부터 시작된 물 절약 캠페인에 이어서 10월8일부터 물 사용량 20%를 줄이기 위한 급수조정이 시작돼 지역주민들의 일상생활이 제약을 받기 시작하였다. 수도꼭지를 틀어보아도 시원한 물줄기를 볼 수 있은 지가 오래되었고 목욕이나 세차 등으로 충분히 물 쓰는 것이 눈치가 보일뿐더러 마실 물 걱정까지 해야 하는 상황이었다. 그리고, 금강수계 대부분의 생활용수 및 공업용수 공급을 담당하는 대청댐의 상황도 2015년 9월말 기준 누적 강수량은 536.7mm로 전년 강수량 791.6mm 대비 67.8%, 예년 강수량 1,077.5mm의 대비 49.8% 수준으로 강수량이 매우 적은 상황이었다. 9월말 기준으로 대청댐의 '15년 누적 강수량은 1981년 댐 운영 이후 가장 최소이며, 2순위로 9월말 누적 강수량이 적었던 해는 1994년이며 이 때 누적 강수량은 543.8mm, 3순위로 적었던 해는 1982년으로 이 해는 585.8mm였다. 대청댐의 저수위 현황을 살펴보면 6월말에 예년 수준과 비슷한 수위로 운영하였지만 7월말부터 예년보다 수위가 낮아지기 시작하여 8월 이후에는 예년과 격차가 나기 시작하였고 작년 10월 중순에는 1981년 댐 운영 이후 3번째로 낮은 저수율을 보이고 있는 상황이었다. 따라서, 이러한 상황에 대처하기 위해 6월부터 실수요량 수준으로 용수를 공급하기 시작하였고 8월말부터 농업용수 공급량 중 일부를 감량하였고 10월부터는 생공용수만 하루 1,987,200톤으로 계획하여 공급하면서 '16년 우기 전까지 최대한 저수량을 확보하면서 용수공급을 지속할 수 있도록 운영하였다. 본 연구에서는 '15년 강수량 부족으로 상당한 어려움을 겪은 충남지역을 중심으로 가뭄 현황을 분석하고, 충남 서북부지역의 주요 공급원인 보령댐과 기타 충남지역의 주수원인 대청댐의 운영현황과 가뭄상황을 타개하기 위해 추진한 방안 등을 살펴보고자 한다.

  • PDF

A Study on the Ecological Characteristics and Management of Vegetation in Gudam Wetland (구담습지 식생의 생태적 특성 및 관리에 관한 연구)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.133-143
    • /
    • 2021
  • This study aims to classify the plant communities of the Gudam wetland, a riparian wetland in Nakdong River basin, and to identify the characteristics of the communities according to the veritical structure to prepare management plan. In the Gudam wetland, a total of 19 plant communities were found through physiognomical vegetation, and were analyzed by dividing into tree dominant community, shrub dominant community, and herbaceous dominant community according to the vertical structure. When examining the results of the community characteristics analysis, the species diversity index was the highest in the tree dominant communities but there was concern about a decrease in species diversity due to the influx of exotic plants such as Sicyos angulatus. The shrub dominant community tended to have a biased species diversity index on shrub plants. The herbaceous dominant communities ware divided into wetland herbaceous communities and dryland herbaceous communities according to the species diversity index, and measures were needed to reduce the species diversity index due to artificial disturbances. The importance value was the highest in the arboreal Salix genus in the tree dominant communities, and the exotic plants such as Amorpha fruticosa were the highest in the shrub dominant communities. In the herbaceous dominant communities, wetland herbaceous plants such as Phragmites japonicus were high. As a result of the analysis according to ordination the tree dominant communities and shrub dominant communities were differentiated by exotic plant factors, and the herbaceous dominant communities were differentiated by hierarchy number and slope.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A study on the selection of priority management watershed for the restoration of water cycle (물순환 회복을 위한 우선관리유역 선정 방안에 대한 연구)

  • Kim, Jaemoon;Baek, Jongseok;Park, Jaerock;Park, Byungwoo;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.749-759
    • /
    • 2022
  • The paradigm of water cycle management in the watershed is changing due to the increase in abnormal climate phenomena caused by climate change and the increase in impervious area due to urbanization. Research is continuously underway based on Low Impact Development technology that can suppress water cycle distortion. In this study, factors that can reflect water cycle distortion were selected before applying LID, and the PSR index for each 148 watershed was calculated for the the Nakdonggang River basin. As of 1975, the PSR index is calculated by calculating the pressure index P, which represents the rate of change in impervious surface area to 2019, the phenomenon index S, which represents the rate of change in water cycle for each subwatershed, and the Low Impact Development area countermeasure index R. The lower PSR index value, the higher the priority management watershed, and the water cycle recovery priority management watershed was calculated in the order of 1, 2, 87, 90, 91, and 147. It is expected that the efficient application of low-impact development factors in accordance with the order of priority management of water cycle by subwatershed in the large area will contribute to the recovery of water cycle distortion.

Estimation of the Hydrological Design Frequency of Local Rivers Using Bayesian Inference and a Sensitivity Analysis of Evaluation Factors (평가인자 가중치에 대한 베이지안 추론과 민감도 분석을 통한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Kim, Ji Eun;Lee, Jin-Young;Park, Kyung-Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.617-626
    • /
    • 2022
  • In Korea, annual precipitation and its variability have gradually increased since modern meteorological observations began, and the risk of disasters has also been increasing due to significant regional variations and recent abnormal climate conditions. Given that damage from storms and floods mainly occurs around rivers, it is crucial to determine the appropriate design frequency for river-related projects. This study examined existing design practices used to determine hydrological design frequencies and suggested a new method to determine appropriate design frequencies. The study collected available data pertaining to seven evaluation factors, specifically the basin areas, shape parameters, channel slopes, stream orders, backwater effect reaches, extreme rainfall frequencies, and urbanized flood inundation areasfor 413 local rivers in Chungcheongnam-do in Korea. The estimated weights for areas of extreme rainfall frequencies and urbanized flood inundation were found to be 18, having a great effect on determining the design frequency. Compared with the established design frequency in previous government reports, the estimated design frequency increased for 255 rivers and decreased for 158 rivers.

Model Analysis of AI-Based Water Pipeline Improved Decision (AI기반 상수도시설 개량 의사결정 모델 분석)

  • Kim, Gi-Tae;Min, Byung-Won;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2022
  • As an interest in the development of artificial intelligence(AI) technology in the water supply sector increases, we have developed an AI algorithm that can predict improvement decision-making ratings through repetitive learning using the data of pipe condition evaluation results, and present the most reliable prediction model through a verification process. We have developed the algorithm that can predict pipe ratings by pre-processing 12 indirect evaluation items based on the 2020 Han River Basin's basic plan and applying the AI algorithm to update weighting factors through backpropagation. This method ensured that the concordance rate between the direct evaluation result value and the calculated result value through repetitive learning and verification was more than 90%. As a result of the algorithm accuracy verification process, it was confirmed that all water pipe type data were evenly distributed, and the more learning data, the higher prediction accuracy. If data from all across the country is collected, the reliability of the prediction technique for pipe ratings using AI algorithm will be improved, and therefore, it is expected that the AI algorithm will play a role in supporting decision-making in the objective evaluation of the condition of aging pipes.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.