• Title/Summary/Keyword: river aggregate

Search Result 159, Processing Time 0.025 seconds

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

The Development of Model of the Modulus of Elasticity applied to Analysis of Concrete Structure using Nature Coarse Aggregate (강자갈을 사용한 콘크리트 구조물의 탄성계수 특성 모델)

  • Lee, Joon-Gu;Park, Kwang-Soo;Shin, Su-Gyun;Kim, Kwan-Ho;Kim, Han-Joung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • This study was performed to find out the regression function to calculate the modulus of elasticity of concrete mixed by river coarse aggregate. The distribution of the group of core strength made a normal curve and the effect factor in the modulus of elasticity was 0.97 at the concrete compounded by river coarse aggregate.

  • PDF

Assessment of Physical River Disturbances in the Namgang-dam Downstream (남강댐하류의 물리적 하천교란 평가)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.74-86
    • /
    • 2008
  • To assessment the disturbances of the Namgang caused by dam construction, upstream area was selected for the reference reach and downstream area was selected for the comparison reach. And these reaches were surveyed and analyzed according to the assessment criteria of the river disturbances.The artificial factors of river disturbances were classified as river improvement works, dam construction and aggregate dredging. The indexes were physical factors as like epifaunal (bottom), embeddedness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles, bank stability, vegetative protection, riparian zone etc.The assessment results showed 46% of the assessment criteria which was serious status in dam downstream area and 89.5% of it which was excellent status in dam upstream.Finally, the results showed that physical river environment in downstream area was disturbed by the discharge control and the interception of sediment discharge by dam, consequently this disturbance give rise to impact of ecosystem in river.

The Properties of Inter-Locking Block with the Variation of Particle Grading and Shape of Aggregate (골재의 입도와 입형 변화에 따른 인터로킹 블록의 특성)

  • 이상태;김기철;신병철;김진선;권상준;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.661-664
    • /
    • 1998
  • In this paper, the properties of inter-lacking block by the kind of aggregate and fineness modulus are investigated. According to the experimental results, compressive strength and flexural strength increase and absorption ratio decrease with larger fineness modulus in the range of 2.15~4.20. Flexural strength with river sand is higher than that with crushed sand by about 19%, compressive strength with river sand, that with crushed sand by about 11% and absorption ratio with river sand is smaller than that with crushed sand by abort 2%.

  • PDF

Evaluation of Quality Properties of Concrete according to Mixing Proportion of Finex Water Granulated Slag Fine Aggregate (파이넥스 수쇄 슬래그 잔골재의 혼합률에 따른 콘크리트의 품질특성 평가)

  • Choi, Yun-Wang;Cho, Bong-Suk;Oh, Sung-Rok;Park, Man-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • This paper evaluated the quality properties of Finex Water Granulated Slag fine aggregate as part of a study to recycle the Finex Water Granulated Slag generated in korea, and examined the availability as fine aggregate for concrete by comparing properties (properties of fresh concrete, mechanical properties of hardened concrete) of concrete using Finex Water Granulated Slag fine aggregate with properties of concrete using river sand as fine aggregate. From the results of this study, it was found that quality properties of concrete using finex water granulated slag as fine aggregate and concrete using river sand as fine aggregate are equivalent level.

Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds (잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 박세인;신현필;이환우;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

Aggregate Utilization Estimation of River Sand according to Typical Location of Main Stream of Nakdong-River (낙동강 본류의 대표위치별 하천모래의 골재 활용성 평가)

  • Park, Jae-Im;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3719-3725
    • /
    • 2012
  • Due to the recent shortage of well-graded river sand resulting from a rapid growth of concrete construction, sea sand, crushed sand, and etc. are increasingly used instead. It is, however, well noted that non-washed sea sand leads to corrosion of the reinforcing steel in concrete, and thus eventually results in damage to concrete. Also, the crushed sand is not being widely used, since it is difficult to maintain the allowable amount of passing 0.08mm sieve and to adjust grading. On the other hand, because the fine sand of Nakdong-River has a poor grading but good quality as a fine aggregate for concrete, it is strongly needed to investigate the fine sand as an alternative fine aggregate. Thus, the purpose of this research is to evaluate the physical properties of the fine sand of Nakdong-River to utilize it actively as a fine aggregate. For this purpose, after the sand samples were collected according to typical location of main stream of Nakdong-River, the physical properties such as density in oven-dry condition, grading, unit volume mass, and etc. of them were estimated. It was observed from the test results that physical properties of the fine sand of Nakdong-River except grading were found to be excellent.

A Study on the Characteristics of Rapid-set concrete as to Fine aggregate Kinds (잔골재의 종류에 따른 초속경콘크리트의 특성에 관한 연구)

  • 정해동;강의주;이환우;장희석;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.417-422
    • /
    • 2001
  • The purpose of this study is to investigate experimentally the workability, compressive and flexural strength properties of rapid-set concrete with various mixture. The kinds of fine aggregate(river sand, sea sand, crushed sand), water-cement ratio(40%, 45%, 50%), sand-aggrega to ratio(33%, 36%, 39%) were chosen as the experimental parameters. Test variables are temperature of concrete, slump, air contents, compressive and flexural strength. The compressive and flexural strength for 3 hours and 6 hours were tested. As result, it was shown that temperature of concrete involved 45$^{\circ}C$, some time later decreased. The workability were decreasing in steps as the sand-aggregate ratio increased and crushed sand was the highest value. Higher compressive and flexural strength was shown following the order of river sand, sea sand, crushed sand regardless of sand-aggregate ratio. But the values of gap was just a little.

  • PDF

An Experimental Study on the Characteristics of Antiwashout Underwater Concrete Using Sea Sand (해사를 사용한 수중불분리콘크리트의 특성에 관한 실험적 연구)

  • 김명식;백동일;어영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.76-82
    • /
    • 1997
  • Recently as the development of a large-scale ocean structure or ocean is in progress, the importance of underwater concrete construction came to the fore. However, a problem with this underwater concrete construction is the segregation of cement and aggregate occurs when concrete is poured into the underwater. However, recently as an adhesiveness of the constituents of fresh concrete is increased even in our country, antiwashout concrete admixture were developed. The antiwashout concrete admixture can reduce the segregation significantly. Although this antiwashout underwater concrete is superior to the traditional underwater concrete in terms of durability, watertightness, stability, etc. But it is still unsatisfied due to the lack of criterion or construction experiences. Furthermore, because of an insufficiency of natural aggregate, the development of replacing aggregate came to be necessary. Accordingly, the purpose of this study is to investigate the feasibility of sea sand as a replacing aggregate and the characteristic change of antiwashout underwater concrete using river sand, sea sand, and blended sand (river sand:sea sand=3:7) through experimental researches.

  • PDF