• Title/Summary/Keyword: risk probability

Search Result 1,158, Processing Time 0.024 seconds

Integrated Safety Risk Assessment and Response Preparation on Construction Site Formwork Using FMECA Method (FMECA 기법을 적용한 건설현장 거푸집작업의 통합 안전위험성 평가 및 대응방안 마련)

  • An, Sun-Ju;Song, Sang-Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • Risk Assessment to list possible safety disasters and their probability and severity is the starting point for effective safety management on construction project site. However, the safety managers in owners, construction supervisors, contractors, and sub-contractors still have difficulties in judging the priorities of safety activities and preparing responses to each potential safety disasters. Therefore, this study aimed to suggest a systematic method in assessing safety risk prior to commencement with the agreement of stakeholders. FMECA(failure mode effects and criticality analysis) was selected as a main assessment tool and it was modified according to the characteristics of construction projects and trades. Each risk is, firstly, evaluated with occurrence probability, possible loss and impacts to projects, and detections, and then risk priority number(RPN) is calculated. Subsequently, the managers of each stakeholder discuss the types, timing, and responsibilities of responses as a group decision-making process.

An Objective Method of Risk Assessment Based on Stochastic Modelling (확률 기반의 위험등급평가 객관화 방안)

  • Shin, Sang-Sik;Lee, Kil-Soo;Cho, Heung-Gi
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.465-474
    • /
    • 2013
  • Purpose: To provide a variety of stable military supplies, risk should be avoided or removed. This paper aims to provide an objective method of risk assesment for risk matrix to evaluate risk level. Methods: According to previous results of risk assesment through risk matrix, some parameters and probability density functions, which include characteristics of military supplies, are selected and Risk matrix is modelled based on that. Results: Results show that a proposed method can evaluate objectively risk level through the stochastic modelling and provide well-balanced risk assessments by categorizing into 3 levels such as high, middle and low level risk. Conclusion: A current risk assessment method includes substantial subjectivity of risk assessment and as a problem about military supplies comes up, we can not show any appropriate evidences for decision of risk assessment. We propose an objective scheme employing stochastic modelling with parameters and probability density functions.

A Risk Quantification Study for Accident Causes on Building Construction Site by Applying Probabilistic Forecast Concept (확률론적 추정 개념을 적용한 건설 공사 현장의 사고원인별 리스크 정량화 연구)

  • Yu, Yeong-Jin;Son, Kiyoung;Kim, Taehui;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • Recently the construction project is becoming large-sized, complicated, and modernize. This has increased the uncertainty of construction risk. Therefore, studies should be followed regarding scientifically identifying the risk factors, quantifying the frequency and severity of risk factors in order to develop a model that can quantitatively evaluate and manage the risk for response the increased risk in construction. To address the problem, this study analyze the probability distribution of risk causes, the probability of occurrence and frequency of the specific risk level through Monte Carlo simulation method based on the accident data caused at construction sites. In the end, this study derives quantitative analysis by analyzing the amount of risk and probability distributions of accident causes. The results of this study will be a basis for future quantitative risk management models and risk management research.

Estimating Geotechnical System Response Probability of Internal Erosion Risk in Fill Dam using Event Tree Analysis (사건수 분석 기법을 이용한 필댐의 내부 침식 위험도에 대한 지반공학적 시스템 응답 확률 산정)

  • Noh, Kyung-Lyun;Lim, Jeong-Yeul;Mok, Young-Jin;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1815-1829
    • /
    • 2014
  • Recently frequent collapse of old fill dams has taken place, which increases social awareness in the safety of the infrastructure. Fill dams in Korea has been incautiously regarded as safe once the fill dam is considered to have a full capacity to retain a conservative design flood determined by government authorities. However, developed foreign countries has been managing their fill dams by introducing systematic risk assessment techniques over a long period of time. In this study, the system response probabilities of the deteriorated old fill dams in Korea were systematically evaluated and analyzed by using the internal erosion toolbox based on the event tree analysis technique. The probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability. The results of this study show that the probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability and the risk of the deteriorated fill dam can be quantitatively assessed.

UNIFORM ASYMPTOTICS FOR THE FINITE-TIME RUIN PROBABILITY IN A GENERAL RISK MODEL WITH PAIRWISE QUASI-ASYMPTOTICALLY INDEPENDENT CLAIMS AND CONSTANT INTEREST FORCE

  • Gao, Qingwu;Yang, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.611-626
    • /
    • 2013
  • In the paper we study the finite-time ruin probability in a general risk model with constant interest force, in which the claim sizes are pairwise quasi-asymptotically independent and arrive according to an arbitrary counting process, and the premium process is a general stochastic process. For the case that the claim-size distribution belongs to the consistent variation class, we obtain an asymptotic formula for the finite-time ruin probability, which holds uniformly for all time horizons varying in a relevant infinite interval. The obtained result also includes an asymptotic formula for the infinite-time ruin probability.

Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir (농업용 저수지 관개 취약성 특성 곡선 산정)

  • Nam, Won-Ho;Kim, Taegon;Choi, Jin-Yong;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Application of first-order reliability method in seismic loss assessment of structures with Endurance Time analysis

  • Basim, Mohammad Ch.;Estekanchi, Homayoon E.;Mahsuli, Mojtaba
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.437-447
    • /
    • 2018
  • Computational cost is one of the major obstacles for detailed risk analysis of structures. This paper puts forward a methodology for efficient probabilistic seismic loss assessment of structures using the Endurance Time (ET) analysis and the first-order reliability method (FORM). The ET analysis efficiently yields the structural responses for a continuous range of intensities through a single response-history analysis. Taking advantage of this property of ET, FORM is employed to estimate the annual rate of exceedance for the loss components. The proposed approach is an amalgamation of two analysis approaches, ET and FORM, that significantly lower the computational costs. This makes it possible to evaluate the seismic risk of complex systems. The probability distribution of losses due to the structural and non-structural damage as well as injuries and fatalities of a prototype structure are estimated using the proposed methodology. This methodology is an alternative to the prevalent risk analysis framework of the total probability theorem. Hence, the risk estimates of the proposed approach are compared with those from the total probability theorem as a benchmark. The results indicate a satisfactory agreement between the two methods while a significantly lower computational demand for the proposed approach.

Risk Factors Influencing Probability and Severity of Elder Abuse in Community-dwelling Older Adults: Applying Zero-inflated Negative Binomial Modeling of Abuse Count Data (영과잉 가산자료(Zero-inflated Count Data) 분석 방법을 이용한 지역사회 거주 노인의 노인학대 발생과 심각성에 미치는 위험요인 분석)

  • Jang, Mi Heui;Park, Chang Gi
    • Journal of Korean Academy of Nursing
    • /
    • v.42 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • Purpose: This study was conducted to identify risk factors that influence the probability and severity of elder abuse in community-dwelling older adults. Methods: This study was a cross-sectional descriptive study. Self-report questionnaires were used to collect data from community-dwelling Koreans, 65 and older (N=416). Logistic regression, negative binomial regression and zero-inflated negative binomial regression model for abuse count data were utilized to determine risk factors for elder abuse. Results: The rate of older adults who experienced any one category of abuse was 32.5%. By zero-inflated negative binomial regression analysis, the experience of verbal-psychological abuse was associated with marital status and family support, while the experience of physical abuse was associated with self-esteem, perceived economic stress and family support. Family support was found to be a salient risk factor of probability of abuse in both verbal-psychological and physical abuse. Self-esteem was found to be a salient risk factor of probability and severity of abuse in physical abuse alone. Conclusion: The findings suggest that tailored prevention and intervention considering both types of elder abuse and target populations might be beneficial for preventative efficiency of elder abuse.

Risk Critical Point (RCP): A Quantifying Safety-Based Method Developed to Screen Construction Safety Risks

  • Soltanmohammadi, Mehdi;Saberi, Morteza;Yoon, Jin Hee;Soltanmohammadi, Khatereh;Pazhoheshfar, Peiman
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.221-235
    • /
    • 2015
  • Risk assessment is an important phase of risk management. It is the stage in which risk is measured thoroughly to achieve effective management. Some factors such as probability and impact of risk have been used in the literature related to construction projects. Because in high-rise projects safety issues are paramount, this study has tried to develop a quantifying technique that takes into account three factors: probability, impact and Safety Performance Index (SPI) where the SPI is defined as the capability of an appropriate response to reduce or limit the effect of an event after its occurrence with regard to safety pertaining to a project. Regarding risk-related literatures which cover an uncertain subject, the proposed method developed in this research is based on a fuzzy logic approach. This approach entails a questionnaire in which the subjectivity and vagueness of responses is dealt with by using triangular fuzzy numbers instead of linguistic terms. This method returns a Risk Critical Point (RCP) on a zoning chart that places risks under categories: critical, critical-probability, critical-impact, and non-critical. The high-rise project in the execution phase has been taken as a case study to confirm the applicability of the proposed method. The monitoring results showed that the RCP method has the inherent ability to be extended to subsequent applications in the phases of risk response and control.