• Title/Summary/Keyword: risk of failure

Search Result 1,600, Processing Time 0.026 seconds

Failure Probability Assessment for Risk Analysis of Concrete Gravity Dam under Flood (홍수 시 콘크리트 중력식댐의 위험도 분석을 위한 파괴확률 산정)

  • Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han;Lim, Jeong-Yeul
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.58-66
    • /
    • 2016
  • This study aims to estimate the failure probability of concrete gravity dams for their risk analysis under flood situation. To the end, failure modes of concrete gravity dams and their limit state functions are proposed based on numerous review of domestic and international literatures on the dam failure cases and design standards. Three failure modes are proposed: overturning, sliding, and overstress. Based on the failure modes the limit state functions, the failure probability is assessed for a weir section and a non-weir section of a dam in Korea. As water level is rising from operational condition to extreme flood condition, the failure probability is found to be raised up to the warning condition, especially for overturning mode at the non-weir section. The result can be used to reduce the risk of the dam by random environmental variables under possible flood situation.

Seismic Failure Probability of the Korean Disaster Risk Fill Dams Estimated by Considering Freeboard Only (여유고만으로 추정된 국내 재해위험 저수지의 지진시 파괴확률)

  • Ha, Ik Soo;Lee, Soo Gwun;Lim, Jeong Yeul;Jung, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.451-461
    • /
    • 2016
  • The objective of this study is to illustrate the methods and procedures for estimating the failure probability of small fill dams subjected to earthquake events and to estimate the seismic failure probability of the Korean disaster risk fill dams where geotechnical information is not available. In this study, first of all, seismic failure probabilities of 7 disaster risk small fill dams, where geotechnical information is available, were evaluated using event tree analysis. Also, the methods and procedures for evaluating probabilities are illustrated. The relationship between dam height and freeboard for 84 disaster risk small dams, for which the safety diagnosis reports are available, was examined. This relationship was associated with the failure computation equation contained in the toolbox of US Army corps of engineers. From this association, the dam height-freeborard critical curve, which represents 'zero' failure probability, was derived. The seismic failure probability of the Korean disaster risk fill dams was estimated using the critical curve and the failure probabilities computed for 7 small dams.

Failure Modes and Effects Analysis for Electric Power Installations of D University (D대학 수변전설비의 고장모드 영향 분석)

  • Park, Young Ho;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.7-15
    • /
    • 2016
  • The purpose of this paper is to carry out Failure Modes and Effects Analysis (FMEA) and use criticality in order to determine risk priority number of the components of electric power installations in Engineering college building of D university. In risk priority number, GROUP A had 7 failure modes; more specifically, Transfomer had 4 modes, Filter(C)(1 mode), LA(1 mode), and CB(MCCB)(1 mode), and thus 4 components had failure modes. In terms of criticality, high-grade group a total of 16 failure modes, and 7 components-LA(1 mode), CB(MCCB)(1 mode), MOF(2 modes), PT(1 mode), Transformer(7 modes), Cable(3 modes), and Filter(C)(1 mode)-had failure modes. Comparison of risk priority number and criticality was made. The components which had high risk priority number and high criticality were Transformer, Filter(C), LA, and CB(MCCB). The components which had high criticality were MOF and cable. In particular, Transformer(RPN: 4 modes, Criticality: 7 modes) was chosen as an intensive management component.

Development of Risk Rating and Index for Coastal Activity Locations

  • Lee, Young-Jai;Jung, Cho-Young;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.227-232
    • /
    • 2020
  • This paper develops a risk index based on an indicator of risk assessment in terms of coastal activity location and accident type. The risk index is derived from a formula which adds the consequence of failure to a vulnerability value, then subtracts the mitigation value. Specifically, the consequence of failure is the number of casualties in coastal activity locations. An indicator of vulnerability refers to coastal environment elements and social elements. A pointer of mitigation includes managerial and organizational elements that indicate the capabilities of coastal activities. A risk rating of coastal activity location is found from a risk matrix consisting of the accident location and type. The purpose of this study is to prevent accidents at coastal activity locations by allowing the Coastal police guard to monitor effectively and inform visitors of potential risks.

A Study on Failure Mode and Effect Analysis (FMEA) for Preoperative Risk Prevention (오류유형 영향분석(FMEA)을 적용한 수술준비 위험예방활동의 효과)

  • Kim, Chang Hee;Lee, Mi Hyang
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.22 no.5
    • /
    • pp.415-423
    • /
    • 2016
  • Purpose: The purpose of this research was to provide patients with safe preoperative preparatory procedures by removing any risk factors from the preparatory procedures by using failure mode and effects analysis, which is a prospective risk-managing tool. Methods: This was a research design in which before and after conditions of a single group were studied, Failure mode and effects analysis were applied for the preparatory procedures done before operations. Results: The preparation omission rate before the operation decreased from 2.70% to 0.04%, and operation cancellation rate decreased from 0.48% to 0.08%. Conclusion: Failure mode and effects analysis which remove any risk factors for patients in advance of the operation is effective in preventing any negligent accidents.

Risk Analysis using Failure Data in Railway E&M System

  • Lee, Chang-Hwan;Song, Mi-Ok;Lim, Sung-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.34-37
    • /
    • 2010
  • In recent, the railway system consists of subsystems as rolling stock and infrastructures as signaling, telecommunication, power supply, overhead contact and platform screen door, etc. Furthermore, each subsystem has complicated interface so as not to understand these relationship. Consequently, to operate the railway system continuously with required safety and availability, the failure data should be corrected and analyzed systematically during operation. To achieve this object effectively, this paper presents the method which is evaluating the operational risk quantitatively using failure data, and selecting the critical equipment. Following this analysis, the improvement plan is established and applied to reduce the operational risk on system or equipment. From this study, the critical equipments of system could be determined and prioritized by risk analysis. Also, the effective maintenance to prevent critical failure could be implanted by this suggested methodology.

  • PDF

Sensitivity analysis of failure correlation between structures, systems, and components on system risk

  • Seunghyun Eem ;Shinyoung Kwag ;In-Kil Choi ;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.981-988
    • /
    • 2023
  • A seismic event caused an accident at the Fukushima Nuclear Power Plant, which further resulted in simultaneous accidents at several units. Consequently, this incident has aroused great interest in the safety of nuclear power plants worldwide. A reasonable safety evaluation of such an external event should appropriately consider the correlation between SSCs (structures, systems, and components) and the probability of failure. However, a probabilistic safety assessment in current nuclear industries is performed conservatively, assuming that the failure correlation between SSCs is independent or completely dependent. This is an extreme assumption; a reasonable risk can be calculated, or risk-based decision-making can be conducted only when the appropriate failure correlation between SSCs is considered. Thus, this study analyzed the effect of the failure correlation of SSCs on the safety of the system to realize rational safety assessment and decision-making. Consequently, the impact on the system differs according to the size of the failure probability of the SSCs and the AND and OR conditions.

A Risk Evaluation Procedure in FMEA for Failure Causes including Common Cause Failures (FMEA에서 공통원인고장이 포함될 경우의 고장원인에 대한 위험평가 절차)

  • Kim, Byung Nam;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.327-338
    • /
    • 2018
  • Purpose: A risk evaluation procedure is proposed for common failure causes in FMEA(Failure Mode and Effects Analysis). The conventional FMEA does not provide a proper means to compare common failure causes with other failure causes. This research aims to develop a risk evaluation procedure in FMEA where common failure causes and other failure causes exist together. Methods: For each common failure cause, the effect of each combination of its resulting failures is recommended to be reevaluated considering their interactive worsening effect. And the probability that each combination of failures is incurred by the same common cause is also considered. Based on these two factors, the severity of each common cause is determined. Other procedures are similar to the conventional method. Results: The proposed procedure enables to compare and prioritize every failure cause. Thus, the common causes, each of which incurring two or more failures, and other causes, each of which is corresponding to one failure, can be fairly compared. Conclusion: A fair and proper way of comparing the common failure causes and other causes is provided. The procedure is somewhat complicated and requires more works to do. But it is worth to do.

A Multivariate Mixture of Linear Failure Rate Distribution in Reliability Models

  • EI-Gohary A wad
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.101-115
    • /
    • 2005
  • This article provides a new class of multivariate linear failure rate distributions where every component is a mixture of linear failure rate distribution. The new class includes several multivariate and bivariate models including Marslall and Olkin type. The approach in this paper is based on the introducing a linear failure rate distributed latent random variable. The distribution of minimum in a competing risk model is discussed.

  • PDF

Prediction of Maintenance Period of Equipment Through Risk Assessment of Thermal Power Plants (화력발전설비 위험도 평가를 통한 기기별 정비주기 예측)

  • Song, Gee Wook;Kim, Bum Shin;Choi, Woo Song;Park, Myung Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1291-1296
    • /
    • 2013
  • Risk-based inspection (RBI) is a well-known method that is used to optimize inspection activities based on risk analysis in order to identify the high-risk components of major facilities such as power plants. RBI, when implemented and maintained properly, improves plant reliability and safety while reducing unplanned outages and repair costs. Risk is given by the product of the probability of failure (POF) and the consequence of failure (COF). A semi-quantitative method is generally used for risk assessment. Semi-quantitative risk assessment complements the low accuracy of qualitative risk assessment and the high expense and long calculation time of quantitative risk assessment. The first step of RBI is to identify important failure modes and causes in the equipment. Once these are defined, the POF and COF can be assessed for each failure. During POF and COF assessment, an effective inspection method and range can be easily found. In this paper, the calculation of the POF is improved for accurate risk assessment. A modified semi-quantitative risk assessment was carried out for boiler facilities of thermal power plants, and the next maintenance schedules for the equipment were decided.