• Title/Summary/Keyword: ripple

Search Result 2,284, Processing Time 0.028 seconds

An Experimental Study on Heat Transfer Characteristics of a Ripple Tube (RIPPLE TUBE의 열전달(熱傳達) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Seong Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.316-326
    • /
    • 1990
  • The measurements of heat transfer and pressure drop were performed on ripple tube with air flow. The results with the tube were compared with the performance of smooth tube. The enhancements in heat transfer coefficient for ripple tube, being compared with smooth tube, was ranged from 7.4 to 39 percent. The local Nusselt number for the inner fin tube, being compared with that for smooth tube, varied from 7.4% to 39%, while the corresponding increase in friction factors were 4.1 to 8.1%. One of the most direct indications of Nusselt number of ripple tube is given as following equation: $$Nu=0.061Re^{0.75}Pr^{0.4}(Tb/Tw)^{0.5}$$ We can see that Nusselt number for ripple tube in this experiment is consistent with the theoretical one taken from Walkinson's equation at Reynolds number range from 8,000 to 20,000.

  • PDF

Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control (Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감)

  • Lee, Hyun-Chang;Jun, Ho-Ik;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

Reduction of Torque Ripple in a BLDC Motor Using an Improved Voltage Control (개선된 전압제어를 이용한 BLDC 전동기의 토크맥동저감)

  • Song, Jeong-Hyun;Jang, Jin-Seok;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • This paper deals with reduction of torque ripple in a brushless DC motor with input voltage control. The commutation torque ripple can be controlled with varying input voltage, but cogging torque is independent on it. So, in this paper a strategy for minimizing torque ripple is proposed by offsetting the cogging torque with deliberate voltage control. The optimal condition is determined with variable voltage levels and advance angles. As results, it is shown that the method causes 63% decrease of torque ripple.

Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구)

  • 이상훈;홍인표;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.91-100
    • /
    • 2002
  • This paper deals with the ripple reduction of the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor). Generally, torque ripple is an important causes of vibration and noise of motor. For reducing torque ripple in IPM with nonsinusoidal EMF, the optimal current which is able to control maximum torque/ampere is considered to be introduced In the proposed method. The fact of torque ripple being reduced when the optimal current Is used in motor is verified through simulation and experiment.

Novel Periodic Torque Ripple Compensation Scheme in Vector Controlled AC Motor Drives (벡터제어 교류전동기 구동에서의 새로운 주기적 토오크 리플 보상기법)

  • Choe, Jong-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.530-536
    • /
    • 2002
  • In this paper, a new torque ripple compensator is proposed. The proposed torque ripple compensator utilizes only speed information, so it can be easily applied to an existing motor drive system by including the algorithm. The stability analysis is discussed. From the discussion, the proper gain selection method, which makes the compensator stable and fast convergent, is also presented. The experimental results are presented and show the torque ripple reduction capability of the proposed scheme.

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Influence of Torque Ripple Caused by Current Harmonics on Induction Motor Fed PWM Inverter (PWM 인버터로 구동되는 유도전동기 시스템에서 고조파가 토오크 맥동에 미치는 영향에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Maeng, I.J.;Sohn, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.12-14
    • /
    • 1995
  • It is necessary to analyze exactly the torque ripple components in the harmonics as to decrease the torque ripple. Lower harmonics influence mainly on torque ripple. Among the harmonics, the pairs of 5's, 7's and 11's, 13's are dominant, and the magnitude of each pairs of current harmonics are very significant. Therefore, for decreasing the torque ripple, current harmonic pairs of 6n ${\pm}$1's orders must be simultaneously eliminated. In the case of eliminating one of current harmonic pairs, even though the magnitude of the current harmonics is small, It has great effect on torque ripple.

  • PDF

Analysis of the Acoustic Noise Characteristics by Controlling Lead Angle in Brushless DC Motors (진상각 제어에 따른 BLDC 전동기의 소음 특성 해석)

  • 황상문;김경태;정승규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Mutual torque ripple in a brushless DC motor is the main source of acoustic noise, especially fur motor operation with high speed and torque. This paper presents a method to obtain mutual torque ripple to identify acoustic noise source. Mutual torque ripple can be determined by analyzing phase current shape and magnetic circuit with different lead angles. Current shape is determined by state space model of voltage equation with the use of inductance calculated by FEM, and confirmed by experimental results. Mutual torque ripple is also determined by FEM analysis for the calculated current shape. Acoustic noise experiment reveals that mutual torque ripple with different lead angle is one of the main sources for noise generation in a brushless DC motor.

  • PDF

An Interleaving Scheme for DC-link Current Ripple Reduction in Parallel-Connected Generator Systems

  • Jeong, Min-Gyo;Shin, Hye Ung;Baek, Ju-Won;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1004-1013
    • /
    • 2017
  • This paper presents an interleaving scheme for parallel-connected power systems to reduce the DC-link current ripple. A paralleled generator system generates current ripple by the Pulse Width Modulation (PWM) of each generator side converter. The current ripple in the DC-link degrades the efficiency of the whole generator system and decreases the lifetime of the DC-link capacitors. To mitigate these issues, the expression of the DC-link current is derived by a double-integral Fourier analysis while considering the modulation schemes. Optimized interleaving angles for the parallel generator system are obtained based on an analysis to minimize the dominant current harmonics component. Finally, the proposed interleaving scheme reduces the RMS value of the DC-link current ripple. Simulation and experimental results verify the effectiveness of the proposed interleaving scheme.