• Title/Summary/Keyword: riparian ecosystem

Search Result 71, Processing Time 0.026 seconds

A Study on Change of Wild Bird Habitat Characteristics According to Riparian Forest Construction in Yangjae Stream, Seoul (서울 양재천 하천 숲 조성에 의한 야생조류 서식특성 변화 연구)

  • Yun, Suk-Hwan;Han, Bong-Ho;Choi, Jin-Woo;Yun, Ho-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.97-110
    • /
    • 2018
  • The purpose of this study is to provide basic data and evidence for the habitat improvement of wild birds in urban stream by analyzing changes in habitat characteristics of wild birds by riparian forest construction in Yangjae stream in Seoul. In Gangnam-gu, the multi layered riparian forest consisting of landscape trees and shrubs was formed on the slope. In Seocho-gu, the vertical vegetation structure of woody and herbaceous wetland plants was good. In Gangnam-gu, the vegetation area of the slope increased and the vertical stratification structure affected the species diversity of the forest birds. The number of species and individuals of plovers, sandpipers and wagtails decreased due to the impact of bicycle roads and trails. The poor forests on the levee slope in Seocho-gu affected the habitat selection and migration of the forest birds. The willows and amur silver-grasses formed in the riverside have been developed into the riparian forest, thus stabilizing the habitat of water birds by blocking disturbances from the influence of the trails.

Distribution of riparian vegetation in Ian Stream (이안천의 식생분포)

  • Kim, Ho-Joon;Lee, Hye-Keun;Choi, Kwang-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1274-1279
    • /
    • 2005
  • The complex vegetation and plant species distributions within riparian corridors influence plant species diversity patterns at both local and regional scales and further reflect both natural and anthropogenic disturbances. Because of these characteristics, riparian zones are often the ecosystem level component that are most sensitive to changes of the surrounding environment; they provide early indications of environmental change and can be viewed as the important source in the watershed. The objectives of this study were two concepts: first, document the composition and dominance of plant communities of riparian areas in the stream, second, compare species composition and temporal diversity between stations in riparian areas of the Ian Stream. The flora was composed to total 158 kinds of the vascular plants as 49 family, 54 genera, 145 species, 12 varieties, 1 forma When the naturalized plant were applied to the recent classification system 280 kinds, the naturalization rate was $10.8\% higher than that of mean value($10.3\%$) of the Korean mountain district. Furthermore, urbanization index (UI) was $6.1\%$. The dominant vegetation communities were distributed in the habitats of three compartments from upstream to downstream. The vegetations were included Phragmites japonica, Salix gracilistyla, S. hulteni and Robinia pseudo-acacia in the riparian area, and Persicaria sieboldii, Stellaria alsine var. undulata, Draba nemorosa var. hebecarpa, Capsella bursa-pastoris, Lepidium apetalum, Bidens frondosa, Trigonotis peduncularis and Hemistepta lyrata in the sandbank or the riparian area, and Equisetum arvense, Humulus japonicus, Persicaria perfoliata, Trifolium repens, Artemisia princeps var. orientalis, Lactuca indica var. laciniata, Avena fatua, Agropyron yesoense, Oenothera odorata, Viola mandshurica, Rumex crispus in banksides, respectively.

  • PDF

Impacts of Aquatic and Riparian Environmental Factors on Eurasian Otter (Lutra lutra) Presence Characteristics in the Nakdong River Basin (낙동강 권역의 하천 수면공간 및 수변환경이 수달의 출현에 미치는 영향분석)

  • Shin, Geehoon;Rho, Paikho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1341-1353
    • /
    • 2017
  • This study aimed to identify the aquatic and riparian factors associated with the presence/absence of the Eurasian otter in the Nakdong river basin, where the species is relatively more abundant than other otter species. Environmental factors and presence records were collected. Geographical Information System technology and chi-square test were used to compare environmental gradients in aquatic and riparian factors between presence and absence sites. Aquatic habitat attributes were evaluated with natural riverside sandbars and channel crossing artificial structures, the ratio of channel width to alluvial plain width, riverbed substrate, and flow diversity. Riverbank characteristics, bank materials, man-made embankment types, and land use/land cover of inland and riverside areas were selected as riparian habitat attributes. Compared to the aquatic attributes, riparian attributes were highly significant when assessing otter presence and absence sites, suggesting that conservation of suitable riparian areas to provide maternity and resting areas for otter species is essential in the Nakdong river basin. None of the aquatic attributes examined were statistically significant when evaluating otter presence or absence. These results indicate that the presence of suitable riparian area for resting and reproduction habitats is more critical to the presence of Eurasian otter than food availability in aquatic areas. To inform implementation of effective conservation actions, broad-scale factors, such as watershed attributes, would be needed to further assess habitat conditions of the Eurasian otter.

Selecting Core Areas for Conserving Riparian Habitat Using Habitat Suitability Assessment for Eurasian Otter (서식지 적합성 평가를 이용한 수변지역 핵심 보전지역 선정 - 수달을 대상으로 -)

  • Jeong, Seunggyu;Park, Chong Hwa;Woo, Donggul;Lee, Dong Kun;Seo, Changwan;Kim, Ho Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.19-32
    • /
    • 2015
  • In Korea, significant riparian areas have been developed due to river maintenance projects. Introduction of new riparian facilities can negatively affect wildlife in the riparian areas. This study focuses on selecting core conservation areas for Eurasian Otter(Lutra lutra) to support decision making process for development of riparian areas. For the study, first of all, field data of study site were collected by field surveys. Secondly, stream naturalness was assessed to understand physical environments of the study sites. Thirdly, habitat suitability was assessed using occurrence data of Eurasian Otter and environmental data. Lastly, core areas for conservation was selected by comparing and synthesizing stream naturalness map and habitat suitability map. The selected core areas showed several characteristics. The number of artificial facilities is low in the core areas. Rocks which are preferred by Eurasian Otter to eat and excrete are plentiful in the core areas. Also, the ratio of adjacent farmland is high. Based on the analyses, it is expected that this study can contribute to decision making process for environmental spatial plans to better conserve habitats of Eurasian Otter.

Study on the Evaluation Criteria of Environment Assessment for the Various Type of Small-Scale Development Projects in the Riparian Areas (수변지역 소규모 개발사업의 유형별 환경평가 기준에 관한 연구)

  • Joo, Yong-Joon;Sagong, Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Various strategies and management plans have been established in order to conserve water quality as well as ecosystem, prevent deterioration of scenic area, and more importantly, retain drinking water securely. However, due to the introduction of numerous small-scale development projects on the waterside area outside protection area of source water and reparian area, river water quality and landscape are severely deteriorated. In this study, We analyzed the expected environmental impacts on the ecosystem, topograph, geology, landscape, water quality according to development type, and assigned different environmental points to each development type depend on environmental impacts, which is able to divide small-scale development project into three categories such as projects with rigorous review, projects with general review and projects with simple review. Finally, we suggested the appraisal basement is to avoid or minimize the expected environment impacts of the small-scale development projects in riparian areas so that make them sustainable development by reasonable restriction.

Spatial Point Pattern Analysis of Riparian Tree Distribution After the 2020 Summer Extreme Flood in the Seomjin River (2020년 여름 섬진강 대홍수 이후 하천 수목 분포에 대한 공간 점 패턴 분석)

  • Lee, Keonhak;Cho, Eunsuk;Cho, Jonghun;Lee, Cheolho;Kim, Hwirae;Baek, Donghae;Kim, Won;Cho, Kang-Hyun;Kim, Daehyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The 2020 summer extreme flood severely disturbed the riparian ecosystem of the Seomjin River. Some trees were killed by the flood impact, whereas others have recovered through epicormic regeneration after the disturbance. At the same time, several tree individuals newly germinated. This research aimed to explain the recovery of the riparian ecosystem by spatial proximity between each tree individual of different characteristics, such as "dead", "recovered", and "newly germinated". A spatial point pattern analysis based on K and g-functions revealed that the newly germinated trees and the existing trees were distributed in the spatially clumping patterns. However, further detailed analysis revealed that the new trees were statistically less attracted to the recovered trees than the dead trees, implying competitive interactions hidden in the facilitative interactions. Habitat amelioration by the existing trees positively affected the growth of the new trees, while "living" existing trees were competing with the new trees for resources. This research is expected to provide new knowledge in this era of rapid climate change, which likely induces stronger and more frequent natural disturbance than before. Environmental factors have been widely used for ecosystem modeling, but species interactions, represented by the relative spatial distribution of plant individuals, are also valuable factors explaining ecosystem dynamics.

A Study on the Conservation Rehabilitation and Creation of Naturalilty of Rivers - River Vegetation Structure of Wonsungcheon and Pungseocheon (하천에 있어서 자연성의 보전, 정비, 창출에 관한 연구 II - 원성천과 풍서천의 하천식생구조를 대상으로 -)

  • Bang, Kwang-Ja;Lee, Jin-Hee;Sul, Jong-Ho;Kang, Hyun-Kyung;Park, Sung-Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.53-64
    • /
    • 1998
  • This study was performed to build up the ecological guidelines to grasp the structure of the vegetation change which is due to river rehabilitation. Anyway, river ecosystem and function has been destroyed owing to river development. It is important that river vegetation supplies ecological corridor and biotope. Two survey sites(Wonsungcheon and Pungseocheon)were investigated in the aspect of plant ecosystem and structure to settle the practical concept of river ecosystem. Each survey site was subdivided to five plots. The site was surveyed through the belttransect method. Wonsungcheon gets more seriously polluted as it runs to the urban area. In other words, there are On the other hand, Pungseocheon has more naturality but its downstream is under the pressure of various wood plants in the upstream area, but downstream area is dominated by naturalized plants such as Bidens frondosa, Panicum dichotomiflorum, etc. Riverbank of downstream has been changed into farm and parking lot. development. It should be preserved definitely because it still has abundant naturality and wetland which formed a biotope. The objective of the research is to find out the river retrogression and maintenance methods based on the riparian vegetation structure. To manage the river ecologically, hydrophytes should be induced partly for natural purification after the riverside is rehabilitated. The vegetation should be induced step by step to restore natural river and steady monitoring and research are required.

  • PDF

Habitat Potential Evaluation Using Maxent Model - Focused on Riparian Distance, Stream Order and Land Use - (Maxent 모형을 이용한 서식지 잠재력 평가 - 하천으로부터의 거리, 하천의 차수, 토지이용을 중심으로-)

  • Lee, Dong-Kun;Kim, Ho-Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.161-172
    • /
    • 2010
  • As the interest on biodiversity has increased around the world, researches about evaluating potential for habitat are also increasing to find and comprehend the valuable habitats. This study focus on comprehending the significance of stream in evaluating habitat's potential. The purpose of this study is to evaluate habitat potential with applying stream as a main variable, and to comprehend the relationship between the variables and habitat potential. Basin is a unit that has hydrological properties and dynamic interaction with ecosystem. Especially, biodiversity and suitability of habitat in basin area has direct correlation with stream. Existing studies also are proposing for habitat potential evaluation in basin unit, they applied forest, slope and road as main variables. Despite stream is considered the most important factor in basin area, researchers haven't applied stream as a main variable. Therefore, in this study, three variables that can demonstrate hydrological properties are selected, which are, riparian distance, stream order and land use disturbance, and evaluate habitat potential. Habitat potential is analyzed by using Maxent (Maximum entropy model), and vertebrate's presence data is used as dependent variables and stream order map and land cover map is used as base data of independent variables. As a result of analysis, habitat potential is higher at riparian and upstream area, and lower at frequently disturbed area. Result indicates that adjacent to stream, upstream, and less disturbed area is the habitat that vertebrate prefer. In particular, mammals prefer adjacent area of stream and forest and reptiles prefer upriver area. Birds prefer adjacent area of stream and midstream and amphibians prefer adjacent area of stream and upriver. The result of this research could help to establish habitat conservation strategy around basin unit in the future.

A Study on the Flora and Vegetation Changes in the Riparian Zones of Han River Watershed (한강 수변구역의 식물상 및 식생변화에 관한 연구)

  • Lee, Jong-Mun;Cho, Yong-Hyeon;Kim, Hyun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.13-30
    • /
    • 2019
  • The purpose of this study was to investigate changes in vegetation and flora after five years through field surveys data with the Han Gang Watershed Management Committee (2013) data in order to observe natural vegetation changes in the riparian zone of Han River watershed. As a result, the flora of the riparian zone in 2012 were listed total 231 taxa, 66 families, 158 genus, 207 species, 23 varieties, and 1 forms, and in 2017, a total 247 taxa, 74 families, 174 genus, 218 species, 27 varieties, and 2 forms were identified. The number of rare plants decreased from 4 taxa in 2012 to 2 taxa in total in 2017, and the number of endemic plants increased from 1 taxa to 3 taxa. The number of specific plants by floral region decreased from 21 taxa (9.1% of all 231 taxa of flora) in 2012 to 16 taxa (6.5% of all 247 taxa of flora) in 2017. The total number of naturalized plants is analyzed to increase from 35 taxa, a naturalization rate of 15.15% (all 231 taxa of flora) and urbanization index of 11.2% (all 312 taxa of naturalized plants) in 2012 to 44 taxa a naturalization rate of 17.8% (all 231 taxa of flora) and urbanization index of 14.1%(all 312 taxa of naturalized plants) in 2017. The ecosystem disturbance species showed an increase in both number of species and cover degree grades, indicating that the riparian zone changed in a negative direction.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.