• Title/Summary/Keyword: ring hole method

Search Result 21, Processing Time 0.022 seconds

Leakage and Rotordynamic Analysis of Damper Floating Ring Seal with Round­Hole Surfaces in the High Pressure Turbo Pump (원형 단면 구멍 표면을 갖는 댐퍼 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석)

  • 하태웅;이용복;김창호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.349-356
    • /
    • 2003
  • A damper floating ring seal with round hole pattern surfaces is suggested for better leakage control. The flat plate test of the round hole pattern surfaces has been performed to yield an empirical friction factor model. The exact predictions of the lock­up position of the damper floating ring, the leakage performance, and the rotordynamic coefficients of the seal are necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations including the empirical friction factor model for round hole pattern surfaces are solved by the Fast Fourier Transform method. The lock­up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the damper floating ring seal. Theoretical results show that the damper floating ring seals yield less leakage and better rotordynamic stability than the floating ring seal with a smooth surface.

In-situ stresses ring hole measurement of concrete optimized based on finite element and GBDT algorithm

  • Chen Guo;Zheng Yang;Yanchao Yue;Wenxiao Li;Hantao Wu
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.477-487
    • /
    • 2024
  • The in-situ stresses of concrete are an essential index for assessing the safety performance of concrete structures. Conventional methods for pore pressure release often face challenges in selecting drilling ring parameters, uncontrollable stress release, and unstable detection accuracy. In this paper, the parameters affecting the results of the concrete ring hole stress release method are cross-combined, and finite elements are used to simulate the combined parameters and extract the stress release values to establish a training set. The GridSearchCV function is utilized to determine the optimal hyperparameters. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are used as evaluation indexes to train the gradient boosting decision tree (GBDT) algorithm, and the other three common algorithms are compared. The RMSE of the GBDT algorithm for the test set is 4.499, and the R2 of the GBDT algorithm for the test set is 0.962, which is 9.66% higher than the R2 of the best-performing comparison algorithm. The model generated by the GBDT algorithm can accurately calculate the concrete in-situ stresses based on the drilling ring parameters and the corresponding stress release values and has a high accuracy and generalization ability.

Fatigue Crack Retardation by Concurrent Cold-Expansion and Ring-indentation (홀확장과 링압인 동시적용에 의한 피로균열지연)

  • Yu, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.305-316
    • /
    • 1997
  • A more efficient method for obtaining the fatigue life enhancement of a structure member with fastener holes is described. It is based on the combined process of cold-expansion and ring-indentation. Residual stresses were induced onto premachined holes using ring-indentation process near the fastener hole combined with cold-expansion. And residual stresses at the vicinity of a hole were evaluated using a fracture mechanics approach. The compressive residual stresses were larger using the combined process than is in the case of simple cold-expansion. Fatigue testing of aluminum specimens showed that the fatigue crack growth retardation emanating from a circular hole was greater for the combined process than for a simple cold-expansion alone.

A Study on the Cam Ring Deformation in a Balanced Type Vane Pump (유압 베인 펌프의 캠 링 변형에 관한 연구)

  • 조명래;한동철;양광식;박제승;최상현
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 1998
  • This paper presents the deformation characteristics of cam ring in a balanced type vane pump. Cam ring is operated in the high-pressure condition. Therefore the local deformation of cam ring affects the characteristics of compression, vane motion and noise and vibration. We analyzed the deformation of cam ring for the three types by using the finite element method. The deformed shape of cam ring and the effects of deformation on the compression are presented. As a result of analysis, we know that the right hole of the cam ring has advantage for reducing the pressure overshoot.

Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method (HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가)

  • Baek, Seung Yeb
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

Cleavage Dependent Indirect Tensile Strength of Pocheon Granite Based on Experiments and DEM Simulation (포천화강암의 결에 따른 간접인장강도 특성에 대한 실험 및 개별요소 수치해석)

  • Zhuang, Li;Diaz, Melvin B.;Jung, Sung Gyu;Kim, Kwang Yeom
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • The purpose of this study is to investigate the influence of cleavages on indirect tensile strength (ITS) of the granite. Brazilian disc tests and ring tests with three different hole sizes were performed. 2D DEM (Discrete Element Method) simulation was employed to further understand the failure process during the tests and the mechanism behind. Results show that ITS decreases across hardway, grain and rift cleavage. Measured average ITS from ring tests is about 2.5 ~ 6.4 times of those measured from Brazilian disc tests, and it decreases with increasing ratio of diameters of inner hole and specimen. Failure pattern in ring tests is influenced by both hole size and relative positions of cleavages parallel and perpendicular to the loading direction.

The Strain of Flexible Ring Type Valve used for Refrigeration Compressor (냉동압축기용(冷凍壓縮機用) 환상형토출(環狀型吐出)밸브의 변형(變形))

  • Jeong, J.W.;Jo, K.O.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 1988
  • On a refrigeration compressor, damage of a discharge valve is one of the annoying troubles for an engineer. Small size compressors, having ring plate type discharge valve are recently used. Therefore, it is very important for engineers to measure and analyze strains of discharge valve. The purpose of this study is to obtain the basic data of the strain of the flexible ring valve. Measurements were performed by the strain gauge bonded on the surface of the flexible ring valve. Stress and strain of the valve were calculated by the method of uniformly loaded circular plates with a central hole. The results obtained are as follows; (1) the strain of flexible ring discharge valve in refrigeration compressor was influenced by tension and compression strain simultaneously. (2) for a given discharge pressure, the tangential and radial strains was increased with increasing discharge pressure. (3) the valve of radial strain was larger than that of tangential strain.

  • PDF

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Development of Collaborative Dual Manipulator System for Packaging Industrial Coils (산업용 코일 포장을 위한 협동 양팔 로봇 시스템의 개발)

  • Haeseong Lee;Yonghee Lee;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.236-243
    • /
    • 2024
  • This paper introduces a dual manipulator system designed to automate the packaging process of industrial coils, which exhibit higher variability than other structured industrial fields due to diverse commercial requirements. The conventional solution involves the direct-teaching method, where an operator instructs the robot on a target configuration. However, this method has distinct limitations, such as low flexibility in dealing with varied sizes and safety concerns for the operators handling large products. In this sense, this paper proposes a two-step approach for coil packaging: motion planning and assembly execution. The motion planning includes a Rapidly-exploring Random Tree algorithm and a smoothing method, allowing the robot to reach the target configuration. In the assembly execution, the packaging is considered a peg-in-hole assembly. Unlike typical peg-in-hole assembly handling two workpieces, the packaging includes three workpieces (e.g., coil, inner ring, side plate). To address this assembly, the paper suggests a suitable strategy for dual manipulation. Finally, the validity of the proposed system is demonstrated through experiments with three different sizes of coils, replicating real-world packaging situations.

The Stress Distribution in a Flat Plate with a Reinforced Circular Hole under Biaxial Loading (보강(補强)된 원형(圓形)구멍을 가진 평판(平板)의 이축하중하(二軸荷重下)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1971
  • The effect of reinforced circular hole in a flat plate under general biaxial loading conditions is considered. The reinforcement is achieved by attaching a circular ring of uniform rectangular cross section along the boundary of the hole. This investigation includes a theoretical solution and an experimental conformation. In the theoretical analysis, Gurney's method is used to obtain a solution for the stress distribution and the solution is expressed in a general form, so that it can be applicable to the case of general biaxial loading and general values of Poisson's ratios. In the experimental work a systematic series of photoelastic models, as shown in Fig.5 and Table 1, were analyzed on polariscope. The experimental results were in good agreement with the theoretical ones, as shown in Fig.8 and 9. The conclusions derived are as follows: 1) The theoretical results, given in Eq. $(1){\sim}(5)$, are sufficient in accuracy for the engineering design purpose. 2) The stress concentration factor decreases as the ratio n increases, but not significant beyond n=3. 3) The stress concentration factor increase as the ratio m increases, but not significant below m=0.7.

  • PDF