• 제목/요약/키워드: ring generalized derivation

검색결과 50건 처리시간 0.025초

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

MULTIPLICATIVE (GENERALIZED) (𝛼, 𝛽)-DERIVATIONS ON LEFT IDEALS IN PRIME RINGS

  • SHUJAT, FAIZA
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권1_2호
    • /
    • pp.1-7
    • /
    • 2022
  • A mapping T : R → R (not necessarily additive) is called multiplicative left 𝛼-centralizer if T(xy) = T(x)𝛼(y) for all x, y ∈ R. A mapping F : R → R (not necessarily additive) is called multiplicative (generalized)(𝛼, 𝛽)-derivation if there exists a map (neither necessarily additive nor derivation) f : R → R such that F(xy) = F(x)𝛼(y) + 𝛽(x)f(y) for all x, y ∈ R, where 𝛼 and 𝛽 are automorphisms on R. The main purpose of this paper is to study some algebraic identities with multiplicative (generalized) (𝛼, 𝛽)-derivations and multiplicative left 𝛼-centralizer on the left ideal of a prime ring R.

A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

  • Demir, Cagri;Argac, Nurcan
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.483-494
    • /
    • 2010
  • Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n,\;x^r]_k\;=\;0$ for all x $\in$ I, then there exists a $\in$ U such that g(x) = xa for all x $\in$ R except when $R\;{\cong}\;=M_2$(GF(2)) and I[I, I] = 0.

A NOTE ON MULTIPLICATIVE (GENERALIZED)-DERIVATION IN SEMIPRIME RINGS

  • REHMAN, NADEEM UR;HONGAN, MOTOSHI
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.81-92
    • /
    • 2018
  • In this article we study two Multiplicative (generalized)- derivations ${\mathcal{G}}$ and ${\mathcal{H}}$ that satisfying certain conditions in semiprime rings and tried to find out some information about the associated maps. Moreover, an example is given to demonstrate that the semiprimeness imposed on the hypothesis of the various results is essential.

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

RESULTS OF 3-DERIVATIONS AND COMMUTATIVITY FOR PRIME RINGS WITH INVOLUTION INVOLVING SYMMETRIC AND SKEW SYMMETRIC COMPONENTS

  • Hanane Aharssi;Kamal Charrabi;Abdellah Mamouni
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.79-91
    • /
    • 2024
  • This article examines the connection between 3-derivations and the commutativity of a prime ring R with an involution * that fulfills particular algebraic identities for symmetric and skew symmetric elements. In practice, certain well-known problems, such as the Herstein problem, have been studied in the setting of three derivations in involuted rings.

SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1251-1267
    • /
    • 2014
  • The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are ${\sigma}$-rigid ${\delta}$-ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where ${\sigma}$ is a ring endomorphism and ${\delta}$ is a ${\sigma}$-derivation.

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

A ONE-SIDED VERSION OF POSNER'S SECOND THEOREM ON MULTILINEAR POLYNOMIALS

  • FILIPPIS VINCENZO DE
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.679-690
    • /
    • 2005
  • Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, f($x_1,{\cdots},\;x_n$) a multilinear polynomial in n non-commuting variables over K, a $\in$ R. Supppose that, for any $x_1,{\cdots},\;x_n\;\in\;I,\;a[d(f(x_1,{\cdots},\;x_n)),\;f(x_1,{\cdots},\;x_n)]$ = 0. If $[f(x_1,{\cdots},\;x_n),\;x_{n+1}]x_{n+2}$ is not an identity for I and $$S_4(I,\;I,\;I,\;I)\;I\;\neq\;0$$, then aI = ad(I) = 0.