• Title/Summary/Keyword: ring generalized derivation

Search Result 50, Processing Time 0.017 seconds

POSNER'S THEOREM FOR GENERALIZED DERIVATIONS ASSOCIATED WITH A MULTIPLICATIVE DERIVATION

  • UZMA NAAZ;MALIK RASHID JAMAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.539-548
    • /
    • 2024
  • Let R be a ring and P be a prime ideal of R. A mapping d : R → R is called a multiplicative derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In this paper, our main motive is to obtain the well-known theorem due to Posner in the ring R/P for generalized derivations associated with a multiplicative derivation defined by an additive mapping F : R → R such that F(xy) = F(x)y + xd(y), where d : R → R is a multiplicative derivation not necessarily additive. This article discusses the use of generalized derivations associated with a multiplicative derivation to investigate the commutativity of the quotient ring R/P.

COMMUTATIVITY OF MULTIPLICATIVE b-GENERALIZED DERIVATIONS OF PRIME RINGS

  • Muzibur Rahman Mozumder;Wasim Ahmed;Mohd Arif Raza;Adnan Abbasi
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Consider ℛ to be an associative prime ring and 𝒦 to be a nonzero dense ideal of ℛ. A mapping (need not be additive) ℱ : ℛ → 𝒬mr associated with derivation d : ℛ → ℛ is called a multiplicative b-generalized derivation if ℱ(αδ) = ℱ(α)δ +bαd(δ) holds for all α, δ ∈ ℛ and for any fixed (0 ≠)b ∈ 𝒬s ⊆ 𝒬mr. In this manuscript, we study the commutativity of prime rings when the map b-generalized derivation satisfies the strong commutativity preserving condition and moreover, we investigate the commutativity of prime rings that admit multiplicative b-generalized derivation, which improves many results in the literature.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

SEMIPRIME NEAR-RINGS WITH ORTHOGONAL DERIVATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.303-310
    • /
    • 2006
  • M. $Bre\v{s}ar$ and J. Vukman obtained some results concerning orthogonal derivations in semiprime rings which are related to the result that is well-known to a theorem of Posner for the product of two derivations in prime rings. In this paper, we present orthogonal generalized derivations in semiprime near-rings.

  • PDF

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.