• 제목/요약/키워드: rigid robot

검색결과 143건 처리시간 0.027초

탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석 (Shock Response Analysis of Guard Robot Considering the Elastic Effect)

  • 김정찬;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

유한요소법을 이용한 유연로보트팔 운동방정식의 정식화

  • 김창부;유영선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.233-238
    • /
    • 2001
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link represented to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M to model complex shaped links systematically and by eleminating elastic mode of higher order that does not largely affect option to reduce the number of elastic degree of freedom. Finally presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control.

유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화 (Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

Control Strategy to Reduce Tracking Error by Impulsive Torques at the Joint

  • Yang Chulho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.61-71
    • /
    • 2005
  • The study reported deals with investigating the feasibility of control strategy for a serial rigid link manipulator that applies impulsive torques at the joints. The strategy is illustrated for a planar three rigid link manipulator. An impulse-based concept which uses successive torque impulses on rigid link as the controller for motion correction was introduced. This control strategy was tested over the entire trajectory to demonstrate that the tracking error could be reduced effectively. The best condition for minimizing the tracking error with the least impulse input at each joint is investigated by considering one design and one operating parameter. The first was the damping in the system, and the second was the sampling time during operation. The results show that this approach can provide useful guidance for the design and control of robot manipulators that require minimum impulse feedback for accurate tracking.

시스템 모델링의 불확실성 추정과 보상 (An Estimation of Modeling Uncertainty for a Mechanical System in Actuators and Links in a Rigid Manipulator Using Control Theory)

  • 박래웅;조설
    • 대한공업교육학회지
    • /
    • 제34권2호
    • /
    • pp.396-410
    • /
    • 2009
  • 이 논문은 산업용 로봇의 모델링을 할 때 일어나는 불확실성을 측정하여, 이 불확실성이 야기하는 비선형 문제를 해결하는 데 필요한 정보를 얻는 데 목적이 있다. 우선 주어진 로봇모델에서 수학적 운동방정식을 유도하고, 불학실성의 물리적 현실에 가능한 가상모델을 접목하여 수학적 확장 모델을 세우고, 이를 바탕으로 불확실성을 측정 할 수 있는 관측자를 설계한다. 이 불확실성에는 모델링을 하기 어려운 모델링 오차, 중력, 마찰, 질량의 불균일 분포, 코리오리스 힘이 포함된다. 관측자와 관련된 조건들을 관측가능성 및 수렴 관계를 분석한다.

강체를 함께 쥔 두 대 로봇의 제어를 위한 동력학적 해석과 최적화 방안 연구 (Study of Dynamic Analysis and Optimization for Control of Two Robots Simultaneously Grasping a Rigid Body Object)

  • 고진환;송문상;유범상;박상민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.507-512
    • /
    • 1997
  • This paper presents a method of finding optitnal joint torques of two robots when they hold an object simultaneously. Although the importance of the multiple cooperating robot system increases for more flcviblc ni;mufacturing automation, dynamic solutions to multi-robot system forming closcd kinematic chain is not easy to find. Newton-Eulcr approach is used for the dynamic formulation of two robots fonn~ng closcd kincmatic chains gmsping a rigid body object. The nrcthodology to optimize the joint torques to satisfy given criterta and obtain bettcr control of the system is discussed. The scheme is illustrated by an example.

  • PDF

다기능 다관절 로봇의 설계 및 제어 (Design and Control of a Multi-Function and Multi-Joint Robot)

  • 주진화
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

마크로-마이크로 로보트의 제어에 관한 연구 (A Study on the Control of Macro-Micro Robotic Systems)

  • 주진화;명지태;박의열;이장명
    • 전자공학회논문지B
    • /
    • 제31B권9호
    • /
    • pp.47-56
    • /
    • 1994
  • In this paper, we demonstrate how to design a redundant robot which is suitable for the multiple task execution without any constraints on the work space. The implementation is possible by the rigid connection of a cacro-robot and a micro-robot. A 5 d.o.f. articulated robor designed for commercial purpose is utilized as a micro-robot which can perform a general task with the appropriate adjustment of its base location. The base of a micro-robot is located at a suitable position by the macro-robot designed and implemented through this research. A task assigned to this redundant robot is performed mainly by the micro-robot. However, when the micro-robot cannot perform the task by itself or when the micro-robot has difficulties in performing the task, the coordination of the macro-robot is requited. To monitor the task execution efficiency of the micro-robot, we used the 'Manipulability Measure' as a cost function. The coordination between the two robots are verified both by the simulation and the experiment.

  • PDF