• 제목/요약/키워드: rigid plastic FEM

검색결과 114건 처리시간 0.019초

강체요소를 이용한 인발 공정의 상계요소 해석 (An Analysis for Drawing of Strip by UBET with Rigid Elements)

  • 최일국;최영;허관도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.598-603
    • /
    • 2001
  • For metal forming analysis, upper-bound solution is practical method because the solution is overestimated. It is limited to determine stresses on tools by using upper-bound solution. In this study, new scheme to calculate stresses on tools based on upper bound solution is proposed. To verify the proposed scheme, plane strain drawing has been considered. The stresses on tools obtained by the proposed scheme are compared with results of rigid plastic FEM. And the stresses on tools have been determined by the proposed scheme in the forging within plane strain deformation.

  • PDF

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

엔진 벨브 스프링 컵 단조의 유한요소해석 (Finite element analysis of forging for spring cup of engine valve)

  • 이인환;조해용;송홍기;김지훈;서보혁;경기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1361-1366
    • /
    • 2007
  • Forging for spring cup of engine valve was investigated in this study. New method is needed to reduce cost and development lead time required to fix forming process of new product, that eventually can provide die, metal flow and forming loads with high confidence level. FEM could provide required detail information that could reduce trial error in advance before the actual production. By using the rigid-plastic finite element simulation, possibilities of improving former research were explored. Results generated by FEM could foresee expected material deformation in advance and made possible new forming process successfully.

  • PDF

유한요소법을 활용한 궤도륜의 프레스 성형공정 설계 (Process Analysis and Design in Forming of Bearing Rings by the FEM)

  • 강범수;이진희;변상규;최한호;김완두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.80-91
    • /
    • 1994
  • This study aims detecting forming defects for the forming process of bearing rings, which is designed by an industry expert. The designed process consists of one forming operation for the outer ring and four operations for the inner ring. The thickness of the sheet used is 1.6mm, and is in between of thin sheet and bulk material. Here the rigid-plastic finite element method is applied to the analysis and design of the process without considering anisotropy of thin sheet. Thinning and folding defects are detected if the initially designed process is applied for manufacturing. so a new process is designed by referring the results of the FEM. It is confirmed that the industry expert agree the possibility of defects derived from FEM results.

  • PDF

유한요소법을 활용한 궤도륜의 프레스 성형공정 설계 (Process Analysis and Design in Forming of Bearing Rings by the FEM)

  • 강범수;이진희;변상규;최한호;김완두
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.189-201
    • /
    • 1994
  • This study aims detecting forming defects for the forming process of bearing rings, which is designed by and industry expert. The designed process consists of one forming operation for the outer ring and four operations for the inner ring. The thickness of the sheet used is 1.6mm, and is in between of thin sheet and bulk material. Here the rigid-plastic finite element method is applied to the analysis and design of the process without considering anisotropy of thin sheet. Thinning and folding defects are detected if the initially designed process is applied for manufacturing. So a new process is designed by referring the results of the FEM. It is confirmed that the industry expert agree the possibility of defects derived from FEM results.

  • PDF

알루미늄 AA 1050 판재구속전단가공 시 불균질 집합조직 형성의 해석 (Analysis on Inhomogeneous Textures Developed in Aluminum AA 1050 Sheets during Continuous Confined Strip Shearing)

  • 이재필;석한길;허무영
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.382-387
    • /
    • 2004
  • The continuous confined strip shearing (CCSS) based on the equal channel angular pressing (ECAP) was modeled by means of a rigid-plastic two-dimensional finite element method (FEM). Parallel to the simulations, samples of AA 1050 sheets were experimentally deformed by CCSS. The CCSS deformation led to the formation of through thickness texture gradients comprising a strong shear texture in the sheet center and weak shear textures in the sheet surfaces. FEM analysis revealed variations in the strain component $\varepsilon_13$ along the sample thickness direction, which gave rise to the evolution of different textures. A high friction between the sample and die surface was responsible for lowering intensities of the shear texture components in thickness layers close to the surfaces.

레이디얼 압출에서 플랜지의 성형한계 (The Forming Limit of Flange in the Radial Extrusion)

  • 고병두;장동환;최호준;임중연;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.

강소성 대변형 유한요소법을 이용한 판재 압연연구 (Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation)

  • 김동원;홍성인
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.145-153
    • /
    • 1991
  • 본 연구에서는 Toh가 개발하여 stretchforming에 응용한 강소성 대변형 이론 을 압연문제에 적용하여 강소성 대변형 유한요소 프로그램을 개발하는데 있다.

유한요소법을 이용한 초소성 성형공정 해석 (Analysis of Superplastic Forming Processes U sing Finite Element Method)

  • 홍성석;김민호;김용환
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1411-1421
    • /
    • 1995
  • A rigid visco-plastic finite element method has been developed for modeling superplastic forming processes. The optimum pressure-time relationship for a target strain rate and thickness distributions was predicted using two-node line element based on membrane approximation for plane strain and axisymmetric condition. Analysis of superplastic forming was carried out using the developed program and the numerical results were compared to the values available in the literature for plane strain problems. For description of the contact between the dies and sheet, the direct projection method was applied to the complicated problem and the validity of the scheme was tested. Experiments for the various geometries such as hemisphere and cone were performed with the developed forming machine using the calculated optimum pressure-time curves. Comparison between analysis and experiments showed good agreement.

상계요소법에 의한 판재 인발공정에 관한 연구 (A Study on the Drawing of Strip by Upper Bound Elemental Technique)

  • 허관도;최영;최일국
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.