• Title/Summary/Keyword: rigid pipe

Search Result 60, Processing Time 0.034 seconds

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Study of Surges in a Large-Diameter Subteranean Diversion Channel with Multiple Surge Tanks (대심도 지하관로 배수 시스템의 서어징 현상에 관한 연구)

  • Jeong, Gwang-Geun;Yeo, Un-Sik;An, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.757-768
    • /
    • 1998
  • rate of outflow is equated to the total rate of flow, both the state equation and its linearized equation yield almost identical oscillations of water levels. This shows that effects of pipe resistance on the surges are small, and justifies a free oscillation analysis. Free oscillation equation has six eigen modes of different periods, including a rigid mode which is existed when the pumped rate of outflow differs from the total rate of inflow. The six modes constitute a variety of surges dependent on different inflow and outflow conditions. Presence of the rigid mode needs sophisticated pump operations adjusted to real flood inflows.

  • PDF

A Study on Mechanical Properties for Recycling of PVC Scraps (PVC 스크랩의 재활용 촉진을 위한 기계적 물성에 관한 연구)

  • Kye, Hyoungsan;Lee, Yong Moo;Han, Jaemyung;Hong, Suk won;Kim, Yungsoo;Lee, Dong hyun;Bae, Jong wook
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.45-53
    • /
    • 2015
  • There are few studies on the effects of different sources of PVC scraps generated after the end-of-life PVC products and these scraps are used to prepare PVC products of low quality. In this paper, rigid PVC scraps from different sources such as clothes, pipes, and others were investigated to incorporate into virgin PVC compounds as a part of efforts to recycle various PVC scraps effectively. It was found that the tensile strength and impact strength of the PVC compounds generally decreased with increasing the content of PVC scraps. The impact properties of scrap were in order of CC > PC > RC, tensile strength were PC > CC > RC and Vicat softening temperature shows no specific tendency. CC scraps contents of 50 phr of virgin PVC resin showed 80 %, and PC scrap with 50 phr of virgin resin showed 50% of the mechanical properties with virgin PVC.

The Combustion Gases Toxicity Evaluation of Plastics Material by Colorimetric Gas Detector Tubes (가스검지관법에 의한 플라스틱재료의 연소가스 독성평가)

  • 박영근;김동일;현성호
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In this paper, we had analyzed comsbustion gases using a GASTEC colorimetric gas detector tube according to the method of NES 713 in order to combustion gases toxicity evaluation for beads polystyrene foam, extruded polystyrene foam, rigid polyurethane foam, flexible polyurethane foam, flexible polyvinyl chloride pipe, vinyl floor cover, polyethyelene foam(flame retardant untreated) and polyethyelene foam (flame retardant treated) of plastics material. As results of gas analyses by using this method, comsbustion gases producted from small specimens of plastics material had reached fatal to man at 30 minutes exposure time that had possesed toxicity index of more than 1. Toxicity indexes of each specimen were estimated range of 4.3∼179.2, flexible polyvinyl chloride showed the hightest toxicity index at 179.2, and beads polystyrene foams showed the lowest toxicity index at 4.3.

Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds (연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압)

  • Hong, Byungsik;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.27-38
    • /
    • 2010
  • A series of model test as well as numerical analysis by FEM was performed to investigate lateral earth pressure acting on a buried pipe in soft ground undergoing horizontal soil movement. A model test apparatus was manufactured so as to simulate horizontal soil movement in model soft ground, in which a model rigid buried pipe was installed. The velocity of soil deformation could be controlled as wanted during testing. The model test was performed on buried pipes with various diameters and shapes to investigate major factors affected the lateral earth pressure. The result of model tests showed that the larger lateral earth pressure acted on the buried pipes under the faster velocity of soil movement. The result of numerical analysis, which was performed under immediate loading condition, showed a similar behavior with the result of model tests under 0.3mm/min to 1.0mm/min velocity of soil deformation. Most of model tests showed the soil deformation-lateral load behavior, in which the first yielding load developed at small soil deformation and elastic behavior was observed by the yielding load. Then, lateral load was kept constant by the second yielding load, in which plastic behavior was observed between the first yielding load and the second yielding one. Beyond the second yielding load, the compression behavior zone was observed. When the velocity was too fast, however, the lateral load was increased with soil deformation beyond the first yielding load without showing the second yielding load. The buried pipes with the larger diameter was subjected to the larger lateral load and the larger increasing rate of lateral load. At small soil deformation, the influence of diameter and shape of buried pipes on lateral load was small. However, when soil deformation was increased considerably, the influence became more and more.

Prevention of Insulation Damage Layer and Shell Corrosion in Thermal Storage Tanks for District Heating (지역난방용 축열조의 단열재 손상과 외각부식 개선방안)

  • Bang, Yong-Eoon;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.35-41
    • /
    • 2014
  • The height and capacity of the thermal storage tank can be decided by the altitude and heat load of the heat supply area. Evaporation in heat pipe can be prevented by pressurizing it with the hydraulic head of the thermal storage tank. In addition, it absorbs the expanded volume from the temperature changes and supplies water to the pipelines in case of the shortage of water. One of the most important roles of the thermal storage tank is a stable heat supply facility. It can control the heat demand by accumulating the surplus heat and supplying in changing heat demand time. The purpose of this thesis is to be helpful for the operation and maintenance of the thermal storage tanks. The study has been carried out for 18 thermal storage tanks, which have been used polyurethane foam as insulation, among 27 tanks in district heating plants. The characteristics of the insulation materials, the reasons for the damages of the insulation and how impact the insulation damages to the corrosion of the thermal storage tank have been studied.

  • PDF

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.

The Effect of Shear Resistance in Rigid Soil-nailed Slope System (강성 쏘일네일 보강 사면의 전단저항 효과)

  • Kwon, Young-Ki;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.295-301
    • /
    • 2009
  • In general the stability of soil nail-slope system, the shear resistance is neglected because the tensile resistance of nail acts mainly for slope stabilization. This is because that deformed steel is generally used for nail and it does ductile behavior. In other side when the steel pipe with high rigidity is used for nail, the shear resistance at failure surface work more than deformed steel. In order to analyze effects of shear resistance at the soil nail-slope system with high steel piped nail, a series of numerical analyses were performed. Also numerical analyses at 3 conditions - 5 nailed, 7 nailed, 9 nailed at the same slope were perfomed for investigating the trend of shear resistance effect. From these 3D numerical analyses, it was found that the maximum shear resistances at each nails were larger in case of steel piped nail and because of this, the factor of safety at the condition of the steel piped nail appears larger than that of deformed steel nail.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.