• Title/Summary/Keyword: rigid inclusion

Search Result 30, Processing Time 0.031 seconds

Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method (경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정)

  • Lee, Kang-Yong;Kwak, Sung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.

Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion (일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1216-1220
    • /
    • 1992
  • In case that a general cusp-crack shaped inclusion expressed in a polynominal form of conformal mapping function exists in a two dimensional elastic body under uniform heat flow, the complex potential and thermal stress intensity factors are derived. Two thermal boundary conditions are considered, one an insulated rigid inclusion and the other a rigid inclusion with fixed boundary temperature. The previous solutions of the thermal stress intensity factors for symmetrical airfoil and lip type rigid inclusions are obtained from the general solution of the thermal stress intensity factors.

복소 유사 응력 함수에 의한 타원 강체 함유물을 내포하는 글잎 재료의 응력 해석

  • 김종성;이강용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.740-743
    • /
    • 1995
  • The analysis model is the power law creep material containing an elliptical rigid inclusion subjected to the arbitrarily directional stress on infinite boundary. The stress analysis is performed using the conformal mapping function and complex pseudo-stress function. The stress distributions near an elliptical rigid inclusion are obtained with various ellipse shapes, strain hardening exponents and directions of applied stress.

  • PDF

Crack Analysis of Creep Material Containing Rigid Inclusion with Line Crack Shape (직선 균열 강체 함유물을 내포하는 크?재료의 균열 해석)

  • 이강용;김종성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.91-97
    • /
    • 1998
  • The analysis model is the infinite body consisted of power law creep material containing a rigid inclusion with line crack shape subjected to the arbitrarily directional stress on an infinite boundary. The crack analysis is performed using the complex pseudo-stress function. The strain rate intensity factor is determined in the closed form as new fracture mechanics parmeter which represents the magnitudes of stress and strain rate near the tip in power law creep material.

  • PDF

Stress analysis of creep material containing elliptical rigid inclusion by complex pseudo-stress function (복소 유사응력함수에 의한 타원 강체함유물을 내포하는 크립재료의 응력해석)

  • Lee, Kang-Yong;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.408-415
    • /
    • 1998
  • The analysis model is the power law creep material containing an elliptical rigid inclusion subjected to the arbitrarily directional stress on infinite boudary. The stress analysis is performed using the conformal mapping function and complex pseudo-stress function. The stress distributions near an elliptical rigid inclusion are obtained with various ellipse shapes, strain hardening exponents and directions of applied stress.

Development of new fracture parameter for rigid inclusion with crack shape in creep material (크립재료의 균열형상 강체함유물에 대한 새로운 파괴역학 매개변수 개발)

  • Lee, Kang-Yong;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2165-2171
    • /
    • 1997
  • The analysis model is the infinite power law creep material containing the rigid inclusion with crack shape. The present analysis is performed using the complex pseudo-stress function method. The strain rate intensity factor is developed as new fracture mechanics parameter which represents the stress and strain rate distribution near a crack tip in power law creep material. The strain rate intensity factor is developed in terms of Kolosoff stress functions.

Analyses of Stress Intensity Factors for Slant Crack Emanation from Circular Inclusion by Boundary Element Method (경계요소법에 의한 원형함유물에서 파생되는 경사균열의 응력확대계수 해석)

  • Park, Sung-Oan;Hwang, Soon-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.72-84
    • /
    • 1998
  • In order ot study the influence of a circular inclusion on a stress field near a crack tip, mutual interference of a slant crack and the circular inclusion is analyzed of a bimaterial inclusion. As the crack emanates at the equivalent slant crack angle the correction factors FⅠ and FⅡ for the inclusion wit small Young's modulus were found to decrease as the inclusion radius increased. The correction factors for inclusion with large Young's modulus increase as the inclusion radius increases at the equivalent radius of the inclusion, the correction factors decrease as the slant crack angle increases for the aspect ratio $\frac{c}{W}$ = 0.1 irrespective of the Young's modulus. For $\frac{c}{W}$ greater than 0.2, they increase as the slant crack angle increases. There is no influence of stress mutual interfce after crack emanates beyond the inclusion radius.

  • PDF

Stress intensity factor and stress distribution near crack tip for infinite body containing regid inclusion with crack shape (균열형상의 강체함유물을 포함하는 무한체에 대한 균열선단 부근의 응력분포와 응력세기계수)

  • Lee, Kang-Young;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.680-683
    • /
    • 1998
  • In case of the infinite body containing a rigid inclusion with line crack shape, stress intensity factor is determined and the relation between stress intensity factor and stress distribution near a crack tip is developed. Also, the relation between stress intensity factor and Kolosoff stress function is developed. Finally, these results are compared with those that the crack surface is under no traction.

A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF