• Title/Summary/Keyword: rigid bodies

Search Result 194, Processing Time 0.02 seconds

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.

A Review of Endoscopic Removal Methods in 127 Cases of the Esophageal Foreign Bodies (소아 식도 이물의 내시경적 적출방법 변화에 대한 고찰)

  • Kim, Jum Su;Yang, Jung Soo;Jung, Hae Sung;Lee, Min Hye;Park, Chan-Hoo;Choi, Myoung Bum;Woo, Hyang-Ok;Youn, Hee-Shang
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.4
    • /
    • pp.459-465
    • /
    • 2002
  • Purpose : The aim of this study was to evaluate the latest tendency of esophageal foreign body's extraction and to obtain a consensus from recent trends of indications and techniques of flexible endoscopy of esophageal FB in children. Methods : We retrospectively reviewed medical records of 127 cases with foreign bodies in esophagus at Dept. of Pediatrics and Otorhinolaryngology, Gyeongsang National University Hospital (GNUH) from Jun, 1987 to July, 2001. They were divided into two groups by the kinds of endoscopy : flexible endoscope(66 cases) or rigid endoscope(61 cases). Rigid endoscopy was performed under general anesthesia at Dept. of Otorhinolaryngology but flexible endoscopy was performed without general anesthesia or sedative drugs(midazolam or diazepam). Results : An annual number of cases of two groups were similar from 1991 to 1998. But from 1999, flexible endoscopy was performed actively. Asymptomatic cases were frequently observed in flexible endoscopy(28 cases/66 cases) but swallowing difficulties were frequently observed in the rigid endoscopy group(25 cases/61 cases). Other symptoms were vomiting, irritability, chest discomfort and abdominal pain. The total number of cases with underlying disease(esophageal stenosis, cerebral palsy) was 8. The total number of cases with complications (erosion, ulcer, bleeding, perforation) was 11. The above cases were not correlated between the two groups. In 55 cases(83.3%) of the flexible endoscopic group and 53 cases(86.8%) of the rigid endoscopic group, foreign bodies in the esophagus were removed within 24 hours. Conclusion : We could not find any benefit in rigid endoscopic technique. Flexible endoscopic FB removal can be performed safely and effectively in children by an experienced endoscopist.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies (차체의 유연성을 고려한 고속철도 차량 승차감 해석)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Koo, Ja-Choon;Lee, Sang-Won;Lee, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • In the development of high-speed trains, ride comfort is an important factor that determines the quality of the train. In this study, the ride comforts of high-speed trains with rigid and flexible car bodies were evaluated. The rail irregularity is used as an exciting source of the car-body bounce motion. The complex extruded structures of the car-body are modeled as shell structures using the calculated equivalent stiffness of the flexible model. The numerical results show that the ride of the rigid-body model improves as the speed increases, which is unreasonable. In contrast, the relationship between ride comfort and speed in the case of flexible-body model is reasonable. Thus, it is confirmed that the flexibility of the car body needs to be taken into consideration while fabricating a high-speed train.

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Multibody models with flexible components for inflatable space structures

  • Petrolo, Marco;Governale, Giorgio;Catelani, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.653-669
    • /
    • 2018
  • This work has the objective to analyze multibody mechanisms of inflatable structures for manned space applications. The focus is on the evaluation of the main characteristics of MaxFlex, a new module of MSC Adams including the effect of nonlinear flexible bodies. MaxFlex integrates the nonlinear Finite Element Analysis (FEA) of Nastran-SOL400-and the Adams multibody capabilities in one unique solver, providing an improvement concerning the concept and technology based on the co-simulation among solvers. MaxFlex converts the equations of motion of the nonlinear FEA into phase-space form and discretizes them according to the multibody system integrator framework. The numerical results deal with an inflatable manned space module having rigid components and a flexible coating made of Kevlar. This paper is a preliminary assessment of the computational capabilities of the software and does not provide realistic guidelines for the actual design of the structure. The analysis leads to some recommendations related to the main issues to consider in a nonlinear simulation including both rigid and flexible components. The results underline the importance of realistic deployment times and applied forces. Also, a proper structural modeling is necessary, but can lead to excessive computational overheads.

Strategy for Determining the Structures of Large Biomolecules using the Torsion Angle Dynamics of CYANA

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.102-108
    • /
    • 2016
  • With the rapid increase of data on protein-protein interactions, the need for delineating the 3D structures of huge protein complexes has increased. The protocols for determining nuclear magnetic resonance (NMR) structure can be applied to modeling complex structures coupled with sparse experimental restraints. In this report, I suggest the use of multiple rigid bodies for improving the efficiency of NMR-assisted structure modeling of huge complexes using CYANA. By preparing a region of known structure as a new type of residue that has no torsion angle, one can facilitate the search of the conformational spaces. This method has a distinct advantage over the rigidification of a region with synthetic distance restraints, particularly for the calculation of huge molecules. I have demonstrated the idea with calculations of decaubiquitins that are linked via Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, or Lys63, or head to tail. Here, the ubiquitin region consisting of residues 1-70 was treated as a rigid body with a new residue. The efficiency of the calculation was further demonstrated in Lys48-linked decaubiquitin with ambiguous distance restraints. The approach can be readily extended to either protein-protein complexes or large proteins consisting of several domains.

Analysis of Three-Dimensional Rigid-Body Collisions with Friction -CoIlisions between EIlipsoids- (마찰력이 개재된 3차원 강체충돌 해석 - 타원체간 충돌 -)

  • Han, In-Hwan;Jo, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1486-1497
    • /
    • 1996
  • The problem of determining the 3-demensional motion of any two rough bodies after a collision involves some rather long analysis and yet in some points it differs essentially from the corresponding problem in tdwo dimensions. We consider a special problem where two rough ellipsolids moving in any manner collide, and analyze the three dimensional impact process with Coulomb friction and Poisson's hypothesis. The differential equations that describe that process of the impact induce a flow in the tangent velocity space, the flow patterns characterize the possible impact cases. By using the graphic method in impulse space and numerical integration thchnique, we analyzed the impact process inall the possible cases and presented the algorithm for determining the post-impact motion. The principles could be applied to the general problem in three dimensions. We verified the effectiveness of the analysis results by simulating the numerous significant examples.