• Title/Summary/Keyword: rigid bodies

Search Result 194, Processing Time 0.022 seconds

Overturning of rocking rigid bodies under transient ground motions

  • Sorrentino, Luigi;Masiani, Renato;Decanini, Luis D.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2006
  • In seismic prone areas it is possible to meet very different objects (equipment components, on shelf artefacts, simple architectural elements) that can be modelled as a rigid body rocking on a rigid foundation. The interest in their behaviour can have different reasons: seismological, in order to estimate the ground motion intensity, or more strictly mechanical, in order to limit the response severity and to avoid overturning. The behaviour of many rigid bodies subjected to twenty wide ranging acceleration recordings is studied here. The response of the blocks is described using kinematic and energy parameters. A condition under which a so called scale effect is tangible is highlighted. The capacity of the signals to produce overturning is compared to different ground motion parameters, and a good correlation with the Peak Ground Velocity is unveiled.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

Forearm Mechanism Inspired by Ligamentous Structure and Its Mobility Analysis (인대 구조에서 기인한 전완 메커니즘과 자유도 해석)

  • Lee, Geon;Lee, Ho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.209-215
    • /
    • 2022
  • In this paper, a forearm Mechanism design inspired by ligamentous structure of the human body is proposed. The proposed mechanism consists of four rigid bodies and fourteen wires without any mechanical joints. Actually, the mechanism is based on the concept of the tensegrity structure. Therefore, the proposed mechanism has inherently compliant characteristics due to the flexibility of the wires composing the structure. Rigid bodies and wires of the mechanism mimic bones and major ligaments in the forearm of the human. The proposed mechanism is classified as one of the interconnected hybrid flexure systems. The analysis method of the degree of freedom (DOF) of the proposed mechanism is also introduced through analyzing technique of the interconnected hybrid flexure systems, in this paper. Ultimately, the proposed mechanism, whose structure is complicated with rigid bodies and wires, mathematically drives that it has 3-DOFs.

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies (중복 고유 진동수를 갖는 진동하는 강체-유연체 계의 위상최적설계)

  • Ahn, Byungseong;Kim, Suh In;Kim, Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.363-372
    • /
    • 2016
  • When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation.

LINEAR STABILITY OF TRIANGULAR EQUILIBRIUM POINTS IN THE PHOTOGRAVITATIONAL RESTRICTED THREE BODY PROBLEM WITH TRIAXIAL RIGID BODIES, WITH THE BIGGER ONE AN OBLATE SPHEROID AND SOURCE OF RADIATION

  • KUMAR, AVDHESH;ISHWAR, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.297-299
    • /
    • 2015
  • In this paper we have examined the linear stability of triangular equilibrium points in the photogravitational restricted three body problem when both primaries are triaxial rigid bodies, the bigger one an oblate spheroid and source of radiation. The orbits about the Lagrangian equilibrium points are important for scientific investigation. A number of space missions have been completed and some are being proposed by various space agencies. We analyze the periodic motion in the neighbourhood of the Lagrangian equilibrium points as a function of the value of the mass parameter. Periodic orbits of an infinitesimal mass in the vicinity of the equilibrium points are studied analytically and numerically. The linear stability of triangular equilibrium points in the photogravitational restricted three body problem with Poynting-Robertson drag when both primaries are oblate spheroids has been examined by A. Kumar (2007). We have found the equations of motion and triangular equilibrium points for our problem. With the help of the characteristic equation we have discussed stability conditions. Finally, triangular equilibrium points are stable in the linear sense. It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of ${\mu}$.

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Removal of a Left Upper Lobar Bronchial Foreign Body Using Fogarty Catheter and Rigid Bronchoscope

  • Woo, Hyunjun;Kim, Seo Young;Kwon, Seong Keun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.1
    • /
    • pp.37-41
    • /
    • 2022
  • Airway foreign body aspiration in children can lead to accidental death, due to the foreign body itself or the removal procedure. Depending on its location, removal of the foreign body can be challenging. Here, we present a case of successful removal of a foreign body from the left upper lobar bronchus via ventilating bronchoscopy with a rigid bronchoscope and Fogarty arterial embolectomy catheter. Tracheobronchial foreign bodies in locations that are difficult to reach with forceps, due to an acute angle or the small diameter of the pediatric bronchial tree, can be effectively removed with a Fogarty arterial embolectomy catheter.

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.