• 제목/요약/키워드: rigid bodies

검색결과 194건 처리시간 0.023초

다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성 (Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves)

  • 김철현;조효제;이승철;구자삼
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

Separation and flux characteristics in cross-flow ultrafiltration of bovine serum albumin and bovine hemoglobin solutions

  • Hsiao, Ruey-Chang;Hung, Chia-Lin;Lin, Su-Hsia;Juang, Ruey-Shin
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.91-103
    • /
    • 2011
  • The flux behavior in the separation of equimolar bovine serum albumin (BSA) and bovine hemoglobin (HB) in aqueous solutions by cross-flow ultrafiltration (UF) was investigated, in which polyacylonitrile membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. BSA and HB have comparable molar mass (67,000 vs. 68,000) but different isoelectric points (4.7 vs. 7.1). The effects of process variables including solution pH (6.5, 7.1, and 7.5), total protein concentration (1.48 and 7.40 ${\mu}M$), transmembrane pressure (69, 207, and 345 kPa), and solution ionic strength (with or without 0.01 M NaCl) on the separation were examined. It was shown that the ionic strength had a negligible effect on separation performance under the conditions studied. Although BSA and HB are not rigid bodies, the flux decline in the present cross-flow UF did not result from the mechanism of cake filtration with compression. In this regard, the specific cake resistance when pseudo steady-state was reached was evaluated and discussed.

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multi-drum columns

  • Papaloizou, Loizos;Polycarpou, Panayiotis;Komodromos, Petros;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.495-521
    • /
    • 2016
  • Ancient monuments of Greek and Roman classical architecture usually consist of multi-drum columns that are constructed of stone blocks placed on top of each other. Several research studies deal with the seismic behaviour of such structures, since earthquakes are common causes of destruction of such monuments. This paper investigates the effect of multiple earthquakes on the seismic performance of multi-drum columns, through numerical simulations and parametric analyses. The Discrete Element Method and an appropriate contact model have been implemented in a specially developed software application that is able to efficiently perform the necessary simulations in two dimensions. Specifically, various strong ground excitations are used in series for the computation of the collective final deformation of multi-drum columns. In order to calculate this cumulative deformation for a series of ground motions, the individual deformation of the column for each excitation is computed and then used as initial conditions for the next earthquake excitation. Various multi-drum columns with different dimensions are also considered in the analyses in order to examine how the geometric characteristics of columns can affect their seismic sequence behaviour, in combination with the excitation frequency content.

이중 탄성지지 주기관 모듈의 MIL-S-901D 중중량 충격시험 수치 시뮬레이션 (Numerical Simulation of MIL-S-901D Heavy Weight Shock Test of a Double Resiliently Mounted Main Engine Module)

  • 권정일;이상갑;정정훈
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.499-505
    • /
    • 2005
  • Underwater explosion shock response analysis of a nonlinear double resiliently mounted equipment on a MIL-S-901D Large floating Shock Platform(LFSP) was carried out using LS-DYNA3D/USA. As a nonlinear double resiliently mounted equipment, real main engine module of naval ship was considered, where the engine, bearing, and base frame including sound enclosure were treated as rigid bodies with six degrees of freedom. The nonlinear effects of resilient mounts on its shock response characteristics were examined, and the usefulness of our suggested method was also confirmed comparing with calculation results by the equipment maker.

두 타원체 사이의 최단 근접 거리를 구하는 실용적인 방법 (A Practical Method to Compute the Closest Approach Distance of Two Ellipsoids)

  • 최민규
    • 한국게임학회 논문지
    • /
    • 제19권1호
    • /
    • pp.5-14
    • /
    • 2019
  • 본 논문에서는 두 타원체 사이의 중심 간 방향으로의 최단 근접 거리를 구하는 실용적인 방법을 제안한다. 이는 타원체로 근사한 강체 및 변형체의 물리기반 동적 시뮬레이션에서 타원체 사이의 충돌을 처리 하는 핵심 기술이다. 본 논문에서는 외부에서 접하는 두 타원체의 중심 간 거리와 접촉점 및 접촉방향에 관한 조건식을 세우고 고정점 반복법 및 Aitken의 델타 자승 절차를 이용하여 최단 근접 거리를 구하는 방법을 개발한다. 또한 실제 오차에 따른 종료 조건을 도입함으로써 게임 등의 실시간 응용에서 최단 근접 거리를 더욱 빠르게 구할 수 있게 한다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

유한요소 해석을 이용한 초탄성체 햅틱 피드백 연구 (Hyper-elastic Model Haptic Feedback Using Finite Element Analysis)

  • 박승현;김진현
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.260-265
    • /
    • 2022
  • In this study, we establish hyper-elastic haptic feedback in a virtual environment using finite element analysis techniques and develop a Force Torque (FT) sensor utilization method for application in tele-operation environments. In general, regarding haptic feedback data, in a tele-operation environment, the user is provided with feedback according to the measured force data when the model is inserted through an FT sensor. Conversely, in a virtual environment, the press-fitting model can be expressed through the spring-damper system rather than an FT sensor to provide feedback. However, unlike rigid and the elastic bodies, the hyper-elastic body represented by a spring-damper system in a virtual environment is a simple impedance model using stiffness and damping coefficients; it is limited in terms of providing actual feedback. Thus, in this study, haptic feedback was implemented using the data obtained from POD-RBF analysis results during hyper-elastic press-fitting experiments. The haptic feedback mechanism developed in this study was verified by comparing the FT sensor feedback data measured and calculated through hyper-elastic press-fitting experiments with spring-damper feedback data. Subsequently, the POD-RBF analysis feedback was compared and evaluated against the feedback mechanism of each environment through the test subject, and the similarities between the POD-RBF analysis feedback and FT sensor data feedback were verified.

Removal of a Bronchial Foreign Body by Bronchoscopic Cryotherapy: A Case Study

  • Kim, Hyoyeon;Byun, Gwanghyun;Lee, Sang Joon;Woo, Seung Hoon
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.55-59
    • /
    • 2021
  • A foreign body in the airway can be a potentially life-threatening event. The diagnosis and treatment of foreign bodies in the airway are a challenge for otolaryngologists. Despite the improvements in medical care and public awareness, approximately 3,000 deaths occur each year from foreign body aspiration. A high degree of vigilance is required to ensure prompt treatment and avoid the complications of foreign body aspiration. The author encountered a case of a 77-year-old female patient who had aspirated an unknown foreign body that was fixed in her main bronchus. An initial attempt was made to remove it with a flexible bronchoscope but failed due to the patient's hypoxemic state during the procedure. Under general anesthesia, a rigid bronchoscopic examination was performed, but it was difficult to approach the object due to the bronchus curvature. Instead, a cryotherapy instrument of bronchoscopy was applied. The foreign body was frozen and removed to the carina, where a laryngoscope and laryngeal forceps were used to remove it.